Extensions 1→N→G→Q→1 with N=D365C2 and Q=C2

Direct product G=N×Q with N=D365C2 and Q=C2
dρLabelID
C2×D365C2144C2xD36:5C2288,355

Semidirect products G=N:Q with N=D365C2 and Q=C2
extensionφ:Q→Out NdρLabelID
D365C21C2 = D727C2φ: C2/C1C2 ⊆ Out D365C21442D36:5C2:1C2288,115
D365C22C2 = C8⋊D18φ: C2/C1C2 ⊆ Out D365C2724+D36:5C2:2C2288,118
D365C23C2 = D366C22φ: C2/C1C2 ⊆ Out D365C2724D36:5C2:3C2288,143
D365C24C2 = D4.9D18φ: C2/C1C2 ⊆ Out D365C21444D36:5C2:4C2288,161
D365C25C2 = D46D18φ: C2/C1C2 ⊆ Out D365C2724D36:5C2:5C2288,358
D365C26C2 = Q8.15D18φ: C2/C1C2 ⊆ Out D365C21444D36:5C2:6C2288,361
D365C27C2 = C4○D4×D9φ: C2/C1C2 ⊆ Out D365C2724D36:5C2:7C2288,362
D365C28C2 = D48D18φ: C2/C1C2 ⊆ Out D365C2724+D36:5C2:8C2288,363
D365C29C2 = D4.10D18φ: C2/C1C2 ⊆ Out D365C21444-D36:5C2:9C2288,364

Non-split extensions G=N.Q with N=D365C2 and Q=C2
extensionφ:Q→Out NdρLabelID
D365C2.1C2 = C424D9φ: C2/C1C2 ⊆ Out D365C2722D36:5C2.1C2288,12
D365C2.2C2 = Dic18⋊C4φ: C2/C1C2 ⊆ Out D365C2724D36:5C2.2C2288,32
D365C2.3C2 = D36.C4φ: C2/C1C2 ⊆ Out D365C21444D36:5C2.3C2288,117
D365C2.4C2 = C8.D18φ: C2/C1C2 ⊆ Out D365C21444-D36:5C2.4C2288,119
D365C2.5C2 = C36.C23φ: C2/C1C2 ⊆ Out D365C21444D36:5C2.5C2288,153
D365C2.6C2 = D36.2C4φ: trivial image1442D36:5C2.6C2288,112

׿
×
𝔽