Copied to
clipboard

G = Dic18:C4order 288 = 25·32

4th semidirect product of Dic18 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D36:4C4, C36.54D4, Dic18:4C4, M4(2):4D9, C22.3D36, C9:2C4wrC2, C4.3(C4xD9), C12.6(C4xS3), C36.6(C2xC4), (C2xC18).1D4, (C2xC6).3D12, (C4xDic9):1C2, (C2xC4).40D18, (C2xC12).44D6, C3.(D12:C4), C6.17(D6:C4), C4.29(C9:D4), (C9xM4(2)):8C2, C2.11(D18:C4), D36:5C2.2C2, (C2xC36).22C22, (C3xM4(2)).8S3, C12.124(C3:D4), C18.10(C22:C4), SmallGroup(288,32)

Series: Derived Chief Lower central Upper central

C1C36 — Dic18:C4
C1C3C9C18C36C2xC36D36:5C2 — Dic18:C4
C9C18C36 — Dic18:C4
C1C4C2xC4M4(2)

Generators and relations for Dic18:C4
 G = < a,b,c | a36=c4=1, b2=a18, bab-1=a-1, cac-1=a17, cbc-1=a27b >

Subgroups: 332 in 66 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C9, Dic3, C12, D6, C2xC6, C42, M4(2), C4oD4, D9, C18, C18, C24, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C4wrC2, Dic9, C36, D18, C2xC18, C4xDic3, C3xM4(2), C4oD12, C72, Dic18, C4xD9, D36, C2xDic9, C9:D4, C2xC36, D12:C4, C4xDic9, C9xM4(2), D36:5C2, Dic18:C4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, D6, C22:C4, D9, C4xS3, D12, C3:D4, C4wrC2, D18, D6:C4, C4xD9, D36, C9:D4, D12:C4, D18:C4, Dic18:C4

Smallest permutation representation of Dic18:C4
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 37 19 55)(2 72 20 54)(3 71 21 53)(4 70 22 52)(5 69 23 51)(6 68 24 50)(7 67 25 49)(8 66 26 48)(9 65 27 47)(10 64 28 46)(11 63 29 45)(12 62 30 44)(13 61 31 43)(14 60 32 42)(15 59 33 41)(16 58 34 40)(17 57 35 39)(18 56 36 38)
(1 28 19 10)(2 9 20 27)(3 26 21 8)(4 7 22 25)(5 24 23 6)(11 18 29 36)(12 35 30 17)(13 16 31 34)(14 33 32 15)(38 54)(39 71)(40 52)(41 69)(42 50)(43 67)(44 48)(45 65)(47 63)(49 61)(51 59)(53 57)(56 72)(58 70)(60 68)(62 66)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,37,19,55)(2,72,20,54)(3,71,21,53)(4,70,22,52)(5,69,23,51)(6,68,24,50)(7,67,25,49)(8,66,26,48)(9,65,27,47)(10,64,28,46)(11,63,29,45)(12,62,30,44)(13,61,31,43)(14,60,32,42)(15,59,33,41)(16,58,34,40)(17,57,35,39)(18,56,36,38), (1,28,19,10)(2,9,20,27)(3,26,21,8)(4,7,22,25)(5,24,23,6)(11,18,29,36)(12,35,30,17)(13,16,31,34)(14,33,32,15)(38,54)(39,71)(40,52)(41,69)(42,50)(43,67)(44,48)(45,65)(47,63)(49,61)(51,59)(53,57)(56,72)(58,70)(60,68)(62,66)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,37,19,55)(2,72,20,54)(3,71,21,53)(4,70,22,52)(5,69,23,51)(6,68,24,50)(7,67,25,49)(8,66,26,48)(9,65,27,47)(10,64,28,46)(11,63,29,45)(12,62,30,44)(13,61,31,43)(14,60,32,42)(15,59,33,41)(16,58,34,40)(17,57,35,39)(18,56,36,38), (1,28,19,10)(2,9,20,27)(3,26,21,8)(4,7,22,25)(5,24,23,6)(11,18,29,36)(12,35,30,17)(13,16,31,34)(14,33,32,15)(38,54)(39,71)(40,52)(41,69)(42,50)(43,67)(44,48)(45,65)(47,63)(49,61)(51,59)(53,57)(56,72)(58,70)(60,68)(62,66) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,37,19,55),(2,72,20,54),(3,71,21,53),(4,70,22,52),(5,69,23,51),(6,68,24,50),(7,67,25,49),(8,66,26,48),(9,65,27,47),(10,64,28,46),(11,63,29,45),(12,62,30,44),(13,61,31,43),(14,60,32,42),(15,59,33,41),(16,58,34,40),(17,57,35,39),(18,56,36,38)], [(1,28,19,10),(2,9,20,27),(3,26,21,8),(4,7,22,25),(5,24,23,6),(11,18,29,36),(12,35,30,17),(13,16,31,34),(14,33,32,15),(38,54),(39,71),(40,52),(41,69),(42,50),(43,67),(44,48),(45,65),(47,63),(49,61),(51,59),(53,57),(56,72),(58,70),(60,68),(62,66)]])

54 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H6A6B8A8B9A9B9C12A12B12C18A18B18C18D18E18F24A24B24C24D36A···36F36G36H36I72A···72L
order122234444444466889991212121818181818182424242436···3636363672···72
size1123621121818181836244422222422244444442···24444···4

54 irreducible representations

dim111111222222222222244
type++++++++++++
imageC1C2C2C2C4C4S3D4D4D6D9C4xS3C3:D4D12C4wrC2D18C4xD9C9:D4D36D12:C4Dic18:C4
kernelDic18:C4C4xDic9C9xM4(2)D36:5C2Dic18D36C3xM4(2)C36C2xC18C2xC12M4(2)C12C12C2xC6C9C2xC4C4C4C22C3C1
# reps111122111132224366626

Matrix representation of Dic18:C4 in GL4(F73) generated by

287000
33100
00270
00046
,
1000
727200
00046
00460
,
1000
727200
00460
0001
G:=sub<GL(4,GF(73))| [28,3,0,0,70,31,0,0,0,0,27,0,0,0,0,46],[1,72,0,0,0,72,0,0,0,0,0,46,0,0,46,0],[1,72,0,0,0,72,0,0,0,0,46,0,0,0,0,1] >;

Dic18:C4 in GAP, Magma, Sage, TeX

{\rm Dic}_{18}\rtimes C_4
% in TeX

G:=Group("Dic18:C4");
// GroupNames label

G:=SmallGroup(288,32);
// by ID

G=gap.SmallGroup(288,32);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,36,100,675,346,80,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^36=c^4=1,b^2=a^18,b*a*b^-1=a^-1,c*a*c^-1=a^17,c*b*c^-1=a^27*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<