Extensions 1→N→G→Q→1 with N=Dic3.D6 and Q=C2

Direct product G=N×Q with N=Dic3.D6 and Q=C2
dρLabelID
C2×Dic3.D648C2xDic3.D6288,947

Semidirect products G=N:Q with N=Dic3.D6 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic3.D61C2 = C249D6φ: C2/C1C2 ⊆ Out Dic3.D6484Dic3.D6:1C2288,444
Dic3.D62C2 = D12.4D6φ: C2/C1C2 ⊆ Out Dic3.D6484Dic3.D6:2C2288,459
Dic3.D63C2 = Dic6⋊D6φ: C2/C1C2 ⊆ Out Dic3.D6248+Dic3.D6:3C2288,578
Dic3.D64C2 = Dic6.D6φ: C2/C1C2 ⊆ Out Dic3.D6488-Dic3.D6:4C2288,579
Dic3.D65C2 = Dic6.10D6φ: C2/C1C2 ⊆ Out Dic3.D6488+Dic3.D6:5C2288,593
Dic3.D66C2 = S32⋊Q8φ: C2/C1C2 ⊆ Out Dic3.D6244Dic3.D6:6C2288,868
Dic3.D67C2 = C4.4S3≀C2φ: C2/C1C2 ⊆ Out Dic3.D6248+Dic3.D6:7C2288,869
Dic3.D68C2 = C32⋊Q16⋊C2φ: C2/C1C2 ⊆ Out Dic3.D6484Dic3.D6:8C2288,874
Dic3.D69C2 = C3⋊S32SD16φ: C2/C1C2 ⊆ Out Dic3.D6248+Dic3.D6:9C2288,875
Dic3.D610C2 = D12.33D6φ: C2/C1C2 ⊆ Out Dic3.D6484Dic3.D6:10C2288,945
Dic3.D611C2 = Dic6.24D6φ: C2/C1C2 ⊆ Out Dic3.D6488-Dic3.D6:11C2288,957
Dic3.D612C2 = Dic612D6φ: C2/C1C2 ⊆ Out Dic3.D6248+Dic3.D6:12C2288,960
Dic3.D613C2 = Dic6.26D6φ: C2/C1C2 ⊆ Out Dic3.D6488+Dic3.D6:13C2288,964
Dic3.D614C2 = S32×Q8φ: C2/C1C2 ⊆ Out Dic3.D6488-Dic3.D6:14C2288,965
Dic3.D615C2 = D1223D6φ: trivial image244Dic3.D6:15C2288,954

Non-split extensions G=N.Q with N=Dic3.D6 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic3.D6.1C2 = (C3×C12).D4φ: C2/C1C2 ⊆ Out Dic3.D6484Dic3.D6.1C2288,376
Dic3.D6.2C2 = C3⋊S3.2Q16φ: C2/C1C2 ⊆ Out Dic3.D6484Dic3.D6.2C2288,378
Dic3.D6.3C2 = C24.23D6φ: C2/C1C2 ⊆ Out Dic3.D6484Dic3.D6.3C2288,450
Dic3.D6.4C2 = Dic6.9D6φ: C2/C1C2 ⊆ Out Dic3.D6488-Dic3.D6.4C2288,592
Dic3.D6.5C2 = C32⋊C4⋊Q8φ: C2/C1C2 ⊆ Out Dic3.D6488-Dic3.D6.5C2288,870
Dic3.D6.6C2 = C3⋊S3⋊Q16φ: C2/C1C2 ⊆ Out Dic3.D6488-Dic3.D6.6C2288,876

׿
×
𝔽