non-abelian, soluble, monomial
Aliases: C4.10S3≀C2, (C3×C12).2D4, C6.D6.C4, C3⋊Dic3.3D4, C32⋊(C4.10D4), Dic3.D6.1C2, C12.31D6.1C2, C32⋊M4(2).1C2, C2.4(S32⋊C4), (C4×C3⋊S3).2C22, (C3×C6).3(C22⋊C4), (C2×C3⋊S3).7(C2×C4), SmallGroup(288,376)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C2×C3⋊S3 — (C3×C12).D4 |
C1 — C32 — C3×C6 — C2×C3⋊S3 — C4×C3⋊S3 — Dic3.D6 — (C3×C12).D4 |
C32 — C3×C6 — C2×C3⋊S3 — (C3×C12).D4 |
Generators and relations for (C3×C12).D4
G = < a,b,c,d | a3=b12=1, c4=d2=b6, ab=ba, cac-1=b4, dad-1=a-1, cbc-1=a-1b3, dbd-1=b7, dcd-1=b9c3 >
Subgroups: 328 in 67 conjugacy classes, 15 normal (13 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C2×C4, Q8, C32, Dic3, C12, D6, M4(2), C2×Q8, C3⋊S3, C3×C6, C3⋊C8, C24, Dic6, C4×S3, C3×Q8, C4.10D4, C3×Dic3, C3⋊Dic3, C3×C12, C2×C3⋊S3, C8⋊S3, S3×Q8, C3×C3⋊C8, C32⋊2C8, C6.D6, C32⋊2Q8, C3×Dic6, C4×C3⋊S3, C12.31D6, C32⋊M4(2), Dic3.D6, (C3×C12).D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, C4.10D4, S3≀C2, S32⋊C4, (C3×C12).D4
Character table of (C3×C12).D4
class | 1 | 2A | 2B | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 18 | 4 | 4 | 2 | 12 | 12 | 18 | 4 | 4 | 12 | 12 | 36 | 36 | 4 | 4 | 8 | 24 | 24 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -1 | -1 | -1 | -1 | 1 | i | -i | -i | i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | i | -i | -i | i | -1 | -1 | -1 | 1 | -1 | -i | i | i | -i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | i | -i | i | -i | -1 | -1 | -1 | -1 | 1 | -i | i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -i | i | i | -i | -1 | -1 | -1 | 1 | -1 | i | -i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | -2 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | 0 | -2 | 1 | 4 | 0 | 0 | 0 | -2 | 1 | 2 | 2 | 0 | 0 | 1 | 1 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3≀C2 |
ρ12 | 4 | 4 | 0 | 1 | -2 | 4 | -2 | -2 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ13 | 4 | 4 | 0 | 1 | -2 | -4 | 2 | -2 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32⋊C4 |
ρ14 | 4 | 4 | 0 | -2 | 1 | 4 | 0 | 0 | 0 | -2 | 1 | -2 | -2 | 0 | 0 | 1 | 1 | -2 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from S3≀C2 |
ρ15 | 4 | 4 | 0 | 1 | -2 | -4 | -2 | 2 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32⋊C4 |
ρ16 | 4 | 4 | 0 | 1 | -2 | 4 | 2 | 2 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ17 | 4 | -4 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C4.10D4, Schur index 2 |
ρ18 | 4 | 4 | 0 | -2 | 1 | -4 | 0 | 0 | 0 | -2 | 1 | 2i | -2i | 0 | 0 | -1 | -1 | 2 | 0 | 0 | i | -i | -i | i | complex lifted from S32⋊C4 |
ρ19 | 4 | 4 | 0 | -2 | 1 | -4 | 0 | 0 | 0 | -2 | 1 | -2i | 2i | 0 | 0 | -1 | -1 | 2 | 0 | 0 | -i | i | i | -i | complex lifted from S32⋊C4 |
ρ20 | 4 | -4 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | 3i | -3i | 0 | 0 | 0 | 2ζ8ζ3+ζ8 | 2ζ87ζ3+ζ87 | 2ζ83ζ3+ζ83 | 2ζ85ζ3+ζ85 | complex faithful |
ρ21 | 4 | -4 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | -3i | 3i | 0 | 0 | 0 | 2ζ87ζ3+ζ87 | 2ζ8ζ3+ζ8 | 2ζ85ζ3+ζ85 | 2ζ83ζ3+ζ83 | complex faithful |
ρ22 | 4 | -4 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | 3i | -3i | 0 | 0 | 0 | 2ζ85ζ3+ζ85 | 2ζ83ζ3+ζ83 | 2ζ87ζ3+ζ87 | 2ζ8ζ3+ζ8 | complex faithful |
ρ23 | 4 | -4 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | -3i | 3i | 0 | 0 | 0 | 2ζ83ζ3+ζ83 | 2ζ85ζ3+ζ85 | 2ζ8ζ3+ζ8 | 2ζ87ζ3+ζ87 | complex faithful |
ρ24 | 8 | -8 | 0 | 2 | -4 | 0 | 0 | 0 | 0 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 40 10 43 7 46 4 37)(2 39 3 38 8 45 9 44)(5 48 6 47 11 42 12 41)(13 29 24 30 19 35 18 36)(14 28 17 25 20 34 23 31)(15 27 22 32 21 33 16 26)
(1 31 7 25)(2 26 8 32)(3 33 9 27)(4 28 10 34)(5 35 11 29)(6 30 12 36)(13 45 19 39)(14 40 20 46)(15 47 21 41)(16 42 22 48)(17 37 23 43)(18 44 24 38)
G:=sub<Sym(48)| (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,40,10,43,7,46,4,37)(2,39,3,38,8,45,9,44)(5,48,6,47,11,42,12,41)(13,29,24,30,19,35,18,36)(14,28,17,25,20,34,23,31)(15,27,22,32,21,33,16,26), (1,31,7,25)(2,26,8,32)(3,33,9,27)(4,28,10,34)(5,35,11,29)(6,30,12,36)(13,45,19,39)(14,40,20,46)(15,47,21,41)(16,42,22,48)(17,37,23,43)(18,44,24,38)>;
G:=Group( (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,40,10,43,7,46,4,37)(2,39,3,38,8,45,9,44)(5,48,6,47,11,42,12,41)(13,29,24,30,19,35,18,36)(14,28,17,25,20,34,23,31)(15,27,22,32,21,33,16,26), (1,31,7,25)(2,26,8,32)(3,33,9,27)(4,28,10,34)(5,35,11,29)(6,30,12,36)(13,45,19,39)(14,40,20,46)(15,47,21,41)(16,42,22,48)(17,37,23,43)(18,44,24,38) );
G=PermutationGroup([[(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,40,10,43,7,46,4,37),(2,39,3,38,8,45,9,44),(5,48,6,47,11,42,12,41),(13,29,24,30,19,35,18,36),(14,28,17,25,20,34,23,31),(15,27,22,32,21,33,16,26)], [(1,31,7,25),(2,26,8,32),(3,33,9,27),(4,28,10,34),(5,35,11,29),(6,30,12,36),(13,45,19,39),(14,40,20,46),(15,47,21,41),(16,42,22,48),(17,37,23,43),(18,44,24,38)]])
Matrix representation of (C3×C12).D4 ►in GL4(𝔽5) generated by
1 | 1 | 0 | 0 |
2 | 3 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 0 | 2 | 3 |
3 | 3 | 0 | 0 |
1 | 4 | 0 | 0 |
0 | 0 | 1 | 3 |
0 | 0 | 1 | 2 |
0 | 0 | 3 | 3 |
0 | 0 | 0 | 2 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 4 | 3 |
0 | 0 | 2 | 1 |
3 | 1 | 0 | 0 |
4 | 2 | 0 | 0 |
G:=sub<GL(4,GF(5))| [1,2,0,0,1,3,0,0,0,0,1,2,0,0,1,3],[3,1,0,0,3,4,0,0,0,0,1,1,0,0,3,2],[0,0,1,0,0,0,0,1,3,0,0,0,3,2,0,0],[0,0,3,4,0,0,1,2,4,2,0,0,3,1,0,0] >;
(C3×C12).D4 in GAP, Magma, Sage, TeX
(C_3\times C_{12}).D_4
% in TeX
G:=Group("(C3xC12).D4");
// GroupNames label
G:=SmallGroup(288,376);
// by ID
G=gap.SmallGroup(288,376);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,112,85,64,219,675,80,2693,2028,691,797,2372]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^12=1,c^4=d^2=b^6,a*b=b*a,c*a*c^-1=b^4,d*a*d^-1=a^-1,c*b*c^-1=a^-1*b^3,d*b*d^-1=b^7,d*c*d^-1=b^9*c^3>;
// generators/relations
Export