Extensions 1→N→G→Q→1 with N=C12xA4 and Q=C2

Direct product G=NxQ with N=C12xA4 and Q=C2
dρLabelID
A4xC2xC1272A4xC2xC12288,979

Semidirect products G=N:Q with N=C12xA4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C12xA4):1C2 = C12:S4φ: C2/C1C2 ⊆ Out C12xA4366+(C12xA4):1C2288,909
(C12xA4):2C2 = C3xC4:S4φ: C2/C1C2 ⊆ Out C12xA4366(C12xA4):2C2288,898
(C12xA4):3C2 = A4xD12φ: C2/C1C2 ⊆ Out C12xA4366+(C12xA4):3C2288,920
(C12xA4):4C2 = C12xS4φ: C2/C1C2 ⊆ Out C12xA4363(C12xA4):4C2288,897
(C12xA4):5C2 = C4xC3:S4φ: C2/C1C2 ⊆ Out C12xA4366(C12xA4):5C2288,908
(C12xA4):6C2 = C4xS3xA4φ: C2/C1C2 ⊆ Out C12xA4366(C12xA4):6C2288,919
(C12xA4):7C2 = C3xD4xA4φ: C2/C1C2 ⊆ Out C12xA4366(C12xA4):7C2288,980

Non-split extensions G=N.Q with N=C12xA4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C12xA4).1C2 = A4:Dic6φ: C2/C1C2 ⊆ Out C12xA4726-(C12xA4).1C2288,907
(C12xA4).2C2 = C3xA4:Q8φ: C2/C1C2 ⊆ Out C12xA4726(C12xA4).2C2288,896
(C12xA4).3C2 = A4xDic6φ: C2/C1C2 ⊆ Out C12xA4726-(C12xA4).3C2288,918
(C12xA4).4C2 = C3xA4:C8φ: C2/C1C2 ⊆ Out C12xA4723(C12xA4).4C2288,398
(C12xA4).5C2 = C12.12S4φ: C2/C1C2 ⊆ Out C12xA4726(C12xA4).5C2288,402
(C12xA4).6C2 = A4xC3:C8φ: C2/C1C2 ⊆ Out C12xA4726(C12xA4).6C2288,408
(C12xA4).7C2 = C3xQ8xA4φ: C2/C1C2 ⊆ Out C12xA4726(C12xA4).7C2288,982
(C12xA4).8C2 = A4xC24φ: trivial image723(C12xA4).8C2288,637

׿
x
:
Z
F
o
wr
Q
<