Extensions 1→N→G→Q→1 with N=C12×A4 and Q=C2

Direct product G=N×Q with N=C12×A4 and Q=C2
dρLabelID
A4×C2×C1272A4xC2xC12288,979

Semidirect products G=N:Q with N=C12×A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C12×A4)⋊1C2 = C12⋊S4φ: C2/C1C2 ⊆ Out C12×A4366+(C12xA4):1C2288,909
(C12×A4)⋊2C2 = C3×C4⋊S4φ: C2/C1C2 ⊆ Out C12×A4366(C12xA4):2C2288,898
(C12×A4)⋊3C2 = A4×D12φ: C2/C1C2 ⊆ Out C12×A4366+(C12xA4):3C2288,920
(C12×A4)⋊4C2 = C12×S4φ: C2/C1C2 ⊆ Out C12×A4363(C12xA4):4C2288,897
(C12×A4)⋊5C2 = C4×C3⋊S4φ: C2/C1C2 ⊆ Out C12×A4366(C12xA4):5C2288,908
(C12×A4)⋊6C2 = C4×S3×A4φ: C2/C1C2 ⊆ Out C12×A4366(C12xA4):6C2288,919
(C12×A4)⋊7C2 = C3×D4×A4φ: C2/C1C2 ⊆ Out C12×A4366(C12xA4):7C2288,980

Non-split extensions G=N.Q with N=C12×A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C12×A4).1C2 = A4⋊Dic6φ: C2/C1C2 ⊆ Out C12×A4726-(C12xA4).1C2288,907
(C12×A4).2C2 = C3×A4⋊Q8φ: C2/C1C2 ⊆ Out C12×A4726(C12xA4).2C2288,896
(C12×A4).3C2 = A4×Dic6φ: C2/C1C2 ⊆ Out C12×A4726-(C12xA4).3C2288,918
(C12×A4).4C2 = C3×A4⋊C8φ: C2/C1C2 ⊆ Out C12×A4723(C12xA4).4C2288,398
(C12×A4).5C2 = C12.12S4φ: C2/C1C2 ⊆ Out C12×A4726(C12xA4).5C2288,402
(C12×A4).6C2 = A4×C3⋊C8φ: C2/C1C2 ⊆ Out C12×A4726(C12xA4).6C2288,408
(C12×A4).7C2 = C3×Q8×A4φ: C2/C1C2 ⊆ Out C12×A4726(C12xA4).7C2288,982
(C12×A4).8C2 = A4×C24φ: trivial image723(C12xA4).8C2288,637

׿
×
𝔽