Extensions 1→N→G→Q→1 with N=C2xC18 and Q=C2xC4

Direct product G=NxQ with N=C2xC18 and Q=C2xC4
dρLabelID
C23xC36288C2^3xC36288,367

Semidirect products G=N:Q with N=C2xC18 and Q=C2xC4
extensionφ:Q→Aut NdρLabelID
(C2xC18):1(C2xC4) = C22:C4xD9φ: C2xC4/C2C22 ⊆ Aut C2xC1872(C2xC18):1(C2xC4)288,90
(C2xC18):2(C2xC4) = Dic9:4D4φ: C2xC4/C2C22 ⊆ Aut C2xC18144(C2xC18):2(C2xC4)288,91
(C2xC18):3(C2xC4) = D4xDic9φ: C2xC4/C2C22 ⊆ Aut C2xC18144(C2xC18):3(C2xC4)288,144
(C2xC18):4(C2xC4) = D4xC36φ: C2xC4/C4C2 ⊆ Aut C2xC18144(C2xC18):4(C2xC4)288,168
(C2xC18):5(C2xC4) = C4xC9:D4φ: C2xC4/C4C2 ⊆ Aut C2xC18144(C2xC18):5(C2xC4)288,138
(C2xC18):6(C2xC4) = C22xC4xD9φ: C2xC4/C4C2 ⊆ Aut C2xC18144(C2xC18):6(C2xC4)288,353
(C2xC18):7(C2xC4) = C22:C4xC18φ: C2xC4/C22C2 ⊆ Aut C2xC18144(C2xC18):7(C2xC4)288,165
(C2xC18):8(C2xC4) = C2xC18.D4φ: C2xC4/C22C2 ⊆ Aut C2xC18144(C2xC18):8(C2xC4)288,162
(C2xC18):9(C2xC4) = C23xDic9φ: C2xC4/C22C2 ⊆ Aut C2xC18288(C2xC18):9(C2xC4)288,365

Non-split extensions G=N.Q with N=C2xC18 and Q=C2xC4
extensionφ:Q→Aut NdρLabelID
(C2xC18).1(C2xC4) = C22.D36φ: C2xC4/C2C22 ⊆ Aut C2xC18724(C2xC18).1(C2xC4)288,13
(C2xC18).2(C2xC4) = C4.D36φ: C2xC4/C2C22 ⊆ Aut C2xC181444-(C2xC18).2(C2xC4)288,30
(C2xC18).3(C2xC4) = C36.48D4φ: C2xC4/C2C22 ⊆ Aut C2xC18724+(C2xC18).3(C2xC4)288,31
(C2xC18).4(C2xC4) = C23.16D18φ: C2xC4/C2C22 ⊆ Aut C2xC18144(C2xC18).4(C2xC4)288,87
(C2xC18).5(C2xC4) = M4(2)xD9φ: C2xC4/C2C22 ⊆ Aut C2xC18724(C2xC18).5(C2xC4)288,116
(C2xC18).6(C2xC4) = D36.C4φ: C2xC4/C2C22 ⊆ Aut C2xC181444(C2xC18).6(C2xC4)288,117
(C2xC18).7(C2xC4) = D4.Dic9φ: C2xC4/C2C22 ⊆ Aut C2xC181444(C2xC18).7(C2xC4)288,158
(C2xC18).8(C2xC4) = C9xC8oD4φ: C2xC4/C4C2 ⊆ Aut C2xC181442(C2xC18).8(C2xC4)288,181
(C2xC18).9(C2xC4) = C8xDic9φ: C2xC4/C4C2 ⊆ Aut C2xC18288(C2xC18).9(C2xC4)288,21
(C2xC18).10(C2xC4) = Dic9:C8φ: C2xC4/C4C2 ⊆ Aut C2xC18288(C2xC18).10(C2xC4)288,22
(C2xC18).11(C2xC4) = C72:C4φ: C2xC4/C4C2 ⊆ Aut C2xC18288(C2xC18).11(C2xC4)288,23
(C2xC18).12(C2xC4) = D18:C8φ: C2xC4/C4C2 ⊆ Aut C2xC18144(C2xC18).12(C2xC4)288,27
(C2xC18).13(C2xC4) = C2xC8xD9φ: C2xC4/C4C2 ⊆ Aut C2xC18144(C2xC18).13(C2xC4)288,110
(C2xC18).14(C2xC4) = C2xC8:D9φ: C2xC4/C4C2 ⊆ Aut C2xC18144(C2xC18).14(C2xC4)288,111
(C2xC18).15(C2xC4) = D36.2C4φ: C2xC4/C4C2 ⊆ Aut C2xC181442(C2xC18).15(C2xC4)288,112
(C2xC18).16(C2xC4) = C2xC4xDic9φ: C2xC4/C4C2 ⊆ Aut C2xC18288(C2xC18).16(C2xC4)288,132
(C2xC18).17(C2xC4) = C2xDic9:C4φ: C2xC4/C4C2 ⊆ Aut C2xC18288(C2xC18).17(C2xC4)288,133
(C2xC18).18(C2xC4) = C2xD18:C4φ: C2xC4/C4C2 ⊆ Aut C2xC18144(C2xC18).18(C2xC4)288,137
(C2xC18).19(C2xC4) = C9xC23:C4φ: C2xC4/C22C2 ⊆ Aut C2xC18724(C2xC18).19(C2xC4)288,49
(C2xC18).20(C2xC4) = C9xC4.D4φ: C2xC4/C22C2 ⊆ Aut C2xC18724(C2xC18).20(C2xC4)288,50
(C2xC18).21(C2xC4) = C9xC4.10D4φ: C2xC4/C22C2 ⊆ Aut C2xC181444(C2xC18).21(C2xC4)288,51
(C2xC18).22(C2xC4) = C9xC42:C2φ: C2xC4/C22C2 ⊆ Aut C2xC18144(C2xC18).22(C2xC4)288,167
(C2xC18).23(C2xC4) = M4(2)xC18φ: C2xC4/C22C2 ⊆ Aut C2xC18144(C2xC18).23(C2xC4)288,180
(C2xC18).24(C2xC4) = C4xC9:C8φ: C2xC4/C22C2 ⊆ Aut C2xC18288(C2xC18).24(C2xC4)288,9
(C2xC18).25(C2xC4) = C42.D9φ: C2xC4/C22C2 ⊆ Aut C2xC18288(C2xC18).25(C2xC4)288,10
(C2xC18).26(C2xC4) = C36:C8φ: C2xC4/C22C2 ⊆ Aut C2xC18288(C2xC18).26(C2xC4)288,11
(C2xC18).27(C2xC4) = C36.55D4φ: C2xC4/C22C2 ⊆ Aut C2xC18144(C2xC18).27(C2xC4)288,37
(C2xC18).28(C2xC4) = C18.C42φ: C2xC4/C22C2 ⊆ Aut C2xC18288(C2xC18).28(C2xC4)288,38
(C2xC18).29(C2xC4) = C36.D4φ: C2xC4/C22C2 ⊆ Aut C2xC18724(C2xC18).29(C2xC4)288,39
(C2xC18).30(C2xC4) = C23:2Dic9φ: C2xC4/C22C2 ⊆ Aut C2xC18724(C2xC18).30(C2xC4)288,41
(C2xC18).31(C2xC4) = C36.9D4φ: C2xC4/C22C2 ⊆ Aut C2xC181444(C2xC18).31(C2xC4)288,42
(C2xC18).32(C2xC4) = C22xC9:C8φ: C2xC4/C22C2 ⊆ Aut C2xC18288(C2xC18).32(C2xC4)288,130
(C2xC18).33(C2xC4) = C2xC4.Dic9φ: C2xC4/C22C2 ⊆ Aut C2xC18144(C2xC18).33(C2xC4)288,131
(C2xC18).34(C2xC4) = C2xC4:Dic9φ: C2xC4/C22C2 ⊆ Aut C2xC18288(C2xC18).34(C2xC4)288,135
(C2xC18).35(C2xC4) = C23.26D18φ: C2xC4/C22C2 ⊆ Aut C2xC18144(C2xC18).35(C2xC4)288,136
(C2xC18).36(C2xC4) = C9xC2.C42central extension (φ=1)288(C2xC18).36(C2xC4)288,45
(C2xC18).37(C2xC4) = C9xC8:C4central extension (φ=1)288(C2xC18).37(C2xC4)288,47
(C2xC18).38(C2xC4) = C9xC22:C8central extension (φ=1)144(C2xC18).38(C2xC4)288,48
(C2xC18).39(C2xC4) = C9xC4:C8central extension (φ=1)288(C2xC18).39(C2xC4)288,55
(C2xC18).40(C2xC4) = C4:C4xC18central extension (φ=1)288(C2xC18).40(C2xC4)288,166

׿
x
:
Z
F
o
wr
Q
<