Copied to
clipboard

G = D4×Dic9order 288 = 25·32

Direct product of D4 and Dic9

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4×Dic9, C23.22D18, C95(C4×D4), C363(C2×C4), (D4×C9)⋊3C4, C2.5(D4×D9), C3.(D4×Dic3), (C6×D4).6S3, (C2×D4).7D9, C41(C2×Dic9), C6.99(S3×D4), C4⋊Dic913C2, (C4×Dic9)⋊4C2, (D4×C18).4C2, (C2×C12).58D6, C18.37(C2×D4), (C2×C4).50D18, (C3×D4).3Dic3, C12.4(C2×Dic3), C222(C2×Dic9), (C22×C6).47D6, C18.28(C4○D4), C2.5(D42D9), C18.D47C2, C18.25(C22×C4), (C2×C18).49C23, (C2×C36).36C22, (C22×Dic9)⋊4C2, C6.85(D42S3), C2.6(C22×Dic9), C6.26(C22×Dic3), C22.25(C22×D9), (C22×C18).17C22, (C2×Dic9).49C22, (C2×C18)⋊3(C2×C4), (C2×C6).2(C2×Dic3), (C2×C6).206(C22×S3), SmallGroup(288,144)

Series: Derived Chief Lower central Upper central

C1C18 — D4×Dic9
C1C3C9C18C2×C18C2×Dic9C22×Dic9 — D4×Dic9
C9C18 — D4×Dic9
C1C22C2×D4

Generators and relations for D4×Dic9
 G = < a,b,c,d | a4=b2=c18=1, d2=c9, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 456 in 141 conjugacy classes, 70 normal (26 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, D4, C23, C9, Dic3, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C18, C18, C2×Dic3, C2×C12, C3×D4, C22×C6, C4×D4, Dic9, Dic9, C36, C2×C18, C2×C18, C2×C18, C4×Dic3, C4⋊Dic3, C6.D4, C22×Dic3, C6×D4, C2×Dic9, C2×Dic9, C2×Dic9, C2×C36, D4×C9, C22×C18, D4×Dic3, C4×Dic9, C4⋊Dic9, C18.D4, C22×Dic9, D4×C18, D4×Dic9
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, Dic3, D6, C22×C4, C2×D4, C4○D4, D9, C2×Dic3, C22×S3, C4×D4, Dic9, D18, S3×D4, D42S3, C22×Dic3, C2×Dic9, C22×D9, D4×Dic3, D4×D9, D42D9, C22×Dic9, D4×Dic9

Smallest permutation representation of D4×Dic9
On 144 points
Generators in S144
(1 38 141 123)(2 39 142 124)(3 40 143 125)(4 41 144 126)(5 42 127 109)(6 43 128 110)(7 44 129 111)(8 45 130 112)(9 46 131 113)(10 47 132 114)(11 48 133 115)(12 49 134 116)(13 50 135 117)(14 51 136 118)(15 52 137 119)(16 53 138 120)(17 54 139 121)(18 37 140 122)(19 57 105 84)(20 58 106 85)(21 59 107 86)(22 60 108 87)(23 61 91 88)(24 62 92 89)(25 63 93 90)(26 64 94 73)(27 65 95 74)(28 66 96 75)(29 67 97 76)(30 68 98 77)(31 69 99 78)(32 70 100 79)(33 71 101 80)(34 72 102 81)(35 55 103 82)(36 56 104 83)
(1 114)(2 115)(3 116)(4 117)(5 118)(6 119)(7 120)(8 121)(9 122)(10 123)(11 124)(12 125)(13 126)(14 109)(15 110)(16 111)(17 112)(18 113)(19 66)(20 67)(21 68)(22 69)(23 70)(24 71)(25 72)(26 55)(27 56)(28 57)(29 58)(30 59)(31 60)(32 61)(33 62)(34 63)(35 64)(36 65)(37 131)(38 132)(39 133)(40 134)(41 135)(42 136)(43 137)(44 138)(45 139)(46 140)(47 141)(48 142)(49 143)(50 144)(51 127)(52 128)(53 129)(54 130)(73 103)(74 104)(75 105)(76 106)(77 107)(78 108)(79 91)(80 92)(81 93)(82 94)(83 95)(84 96)(85 97)(86 98)(87 99)(88 100)(89 101)(90 102)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 72 10 63)(2 71 11 62)(3 70 12 61)(4 69 13 60)(5 68 14 59)(6 67 15 58)(7 66 16 57)(8 65 17 56)(9 64 18 55)(19 111 28 120)(20 110 29 119)(21 109 30 118)(22 126 31 117)(23 125 32 116)(24 124 33 115)(25 123 34 114)(26 122 35 113)(27 121 36 112)(37 103 46 94)(38 102 47 93)(39 101 48 92)(40 100 49 91)(41 99 50 108)(42 98 51 107)(43 97 52 106)(44 96 53 105)(45 95 54 104)(73 140 82 131)(74 139 83 130)(75 138 84 129)(76 137 85 128)(77 136 86 127)(78 135 87 144)(79 134 88 143)(80 133 89 142)(81 132 90 141)

G:=sub<Sym(144)| (1,38,141,123)(2,39,142,124)(3,40,143,125)(4,41,144,126)(5,42,127,109)(6,43,128,110)(7,44,129,111)(8,45,130,112)(9,46,131,113)(10,47,132,114)(11,48,133,115)(12,49,134,116)(13,50,135,117)(14,51,136,118)(15,52,137,119)(16,53,138,120)(17,54,139,121)(18,37,140,122)(19,57,105,84)(20,58,106,85)(21,59,107,86)(22,60,108,87)(23,61,91,88)(24,62,92,89)(25,63,93,90)(26,64,94,73)(27,65,95,74)(28,66,96,75)(29,67,97,76)(30,68,98,77)(31,69,99,78)(32,70,100,79)(33,71,101,80)(34,72,102,81)(35,55,103,82)(36,56,104,83), (1,114)(2,115)(3,116)(4,117)(5,118)(6,119)(7,120)(8,121)(9,122)(10,123)(11,124)(12,125)(13,126)(14,109)(15,110)(16,111)(17,112)(18,113)(19,66)(20,67)(21,68)(22,69)(23,70)(24,71)(25,72)(26,55)(27,56)(28,57)(29,58)(30,59)(31,60)(32,61)(33,62)(34,63)(35,64)(36,65)(37,131)(38,132)(39,133)(40,134)(41,135)(42,136)(43,137)(44,138)(45,139)(46,140)(47,141)(48,142)(49,143)(50,144)(51,127)(52,128)(53,129)(54,130)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96)(85,97)(86,98)(87,99)(88,100)(89,101)(90,102), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,72,10,63)(2,71,11,62)(3,70,12,61)(4,69,13,60)(5,68,14,59)(6,67,15,58)(7,66,16,57)(8,65,17,56)(9,64,18,55)(19,111,28,120)(20,110,29,119)(21,109,30,118)(22,126,31,117)(23,125,32,116)(24,124,33,115)(25,123,34,114)(26,122,35,113)(27,121,36,112)(37,103,46,94)(38,102,47,93)(39,101,48,92)(40,100,49,91)(41,99,50,108)(42,98,51,107)(43,97,52,106)(44,96,53,105)(45,95,54,104)(73,140,82,131)(74,139,83,130)(75,138,84,129)(76,137,85,128)(77,136,86,127)(78,135,87,144)(79,134,88,143)(80,133,89,142)(81,132,90,141)>;

G:=Group( (1,38,141,123)(2,39,142,124)(3,40,143,125)(4,41,144,126)(5,42,127,109)(6,43,128,110)(7,44,129,111)(8,45,130,112)(9,46,131,113)(10,47,132,114)(11,48,133,115)(12,49,134,116)(13,50,135,117)(14,51,136,118)(15,52,137,119)(16,53,138,120)(17,54,139,121)(18,37,140,122)(19,57,105,84)(20,58,106,85)(21,59,107,86)(22,60,108,87)(23,61,91,88)(24,62,92,89)(25,63,93,90)(26,64,94,73)(27,65,95,74)(28,66,96,75)(29,67,97,76)(30,68,98,77)(31,69,99,78)(32,70,100,79)(33,71,101,80)(34,72,102,81)(35,55,103,82)(36,56,104,83), (1,114)(2,115)(3,116)(4,117)(5,118)(6,119)(7,120)(8,121)(9,122)(10,123)(11,124)(12,125)(13,126)(14,109)(15,110)(16,111)(17,112)(18,113)(19,66)(20,67)(21,68)(22,69)(23,70)(24,71)(25,72)(26,55)(27,56)(28,57)(29,58)(30,59)(31,60)(32,61)(33,62)(34,63)(35,64)(36,65)(37,131)(38,132)(39,133)(40,134)(41,135)(42,136)(43,137)(44,138)(45,139)(46,140)(47,141)(48,142)(49,143)(50,144)(51,127)(52,128)(53,129)(54,130)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96)(85,97)(86,98)(87,99)(88,100)(89,101)(90,102), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,72,10,63)(2,71,11,62)(3,70,12,61)(4,69,13,60)(5,68,14,59)(6,67,15,58)(7,66,16,57)(8,65,17,56)(9,64,18,55)(19,111,28,120)(20,110,29,119)(21,109,30,118)(22,126,31,117)(23,125,32,116)(24,124,33,115)(25,123,34,114)(26,122,35,113)(27,121,36,112)(37,103,46,94)(38,102,47,93)(39,101,48,92)(40,100,49,91)(41,99,50,108)(42,98,51,107)(43,97,52,106)(44,96,53,105)(45,95,54,104)(73,140,82,131)(74,139,83,130)(75,138,84,129)(76,137,85,128)(77,136,86,127)(78,135,87,144)(79,134,88,143)(80,133,89,142)(81,132,90,141) );

G=PermutationGroup([[(1,38,141,123),(2,39,142,124),(3,40,143,125),(4,41,144,126),(5,42,127,109),(6,43,128,110),(7,44,129,111),(8,45,130,112),(9,46,131,113),(10,47,132,114),(11,48,133,115),(12,49,134,116),(13,50,135,117),(14,51,136,118),(15,52,137,119),(16,53,138,120),(17,54,139,121),(18,37,140,122),(19,57,105,84),(20,58,106,85),(21,59,107,86),(22,60,108,87),(23,61,91,88),(24,62,92,89),(25,63,93,90),(26,64,94,73),(27,65,95,74),(28,66,96,75),(29,67,97,76),(30,68,98,77),(31,69,99,78),(32,70,100,79),(33,71,101,80),(34,72,102,81),(35,55,103,82),(36,56,104,83)], [(1,114),(2,115),(3,116),(4,117),(5,118),(6,119),(7,120),(8,121),(9,122),(10,123),(11,124),(12,125),(13,126),(14,109),(15,110),(16,111),(17,112),(18,113),(19,66),(20,67),(21,68),(22,69),(23,70),(24,71),(25,72),(26,55),(27,56),(28,57),(29,58),(30,59),(31,60),(32,61),(33,62),(34,63),(35,64),(36,65),(37,131),(38,132),(39,133),(40,134),(41,135),(42,136),(43,137),(44,138),(45,139),(46,140),(47,141),(48,142),(49,143),(50,144),(51,127),(52,128),(53,129),(54,130),(73,103),(74,104),(75,105),(76,106),(77,107),(78,108),(79,91),(80,92),(81,93),(82,94),(83,95),(84,96),(85,97),(86,98),(87,99),(88,100),(89,101),(90,102)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,72,10,63),(2,71,11,62),(3,70,12,61),(4,69,13,60),(5,68,14,59),(6,67,15,58),(7,66,16,57),(8,65,17,56),(9,64,18,55),(19,111,28,120),(20,110,29,119),(21,109,30,118),(22,126,31,117),(23,125,32,116),(24,124,33,115),(25,123,34,114),(26,122,35,113),(27,121,36,112),(37,103,46,94),(38,102,47,93),(39,101,48,92),(40,100,49,91),(41,99,50,108),(42,98,51,107),(43,97,52,106),(44,96,53,105),(45,95,54,104),(73,140,82,131),(74,139,83,130),(75,138,84,129),(76,137,85,128),(77,136,86,127),(78,135,87,144),(79,134,88,143),(80,133,89,142),(81,132,90,141)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G···4L6A6B6C6D6E6F6G9A9B9C12A12B18A···18I18J···18U36A···36F
order1222222234444444···46666666999121218···1818···1836···36
size11112222222999918···182224444222442···24···44···4

60 irreducible representations

dim111111122222222224444
type+++++++++-+++-++-+-
imageC1C2C2C2C2C2C4S3D4D6Dic3D6C4○D4D9D18Dic9D18S3×D4D42S3D4×D9D42D9
kernelD4×Dic9C4×Dic9C4⋊Dic9C18.D4C22×Dic9D4×C18D4×C9C6×D4Dic9C2×C12C3×D4C22×C6C18C2×D4C2×C4D4C23C6C6C2C2
# reps1112218121422331261133

Matrix representation of D4×Dic9 in GL5(𝔽37)

360000
013500
013600
000360
000036
,
360000
013500
003600
000360
000036
,
360000
01000
00100
0001120
0001731
,
60000
036000
003600
000360
000361

G:=sub<GL(5,GF(37))| [36,0,0,0,0,0,1,1,0,0,0,35,36,0,0,0,0,0,36,0,0,0,0,0,36],[36,0,0,0,0,0,1,0,0,0,0,35,36,0,0,0,0,0,36,0,0,0,0,0,36],[36,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,11,17,0,0,0,20,31],[6,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,36,36,0,0,0,0,1] >;

D4×Dic9 in GAP, Magma, Sage, TeX

D_4\times {\rm Dic}_9
% in TeX

G:=Group("D4xDic9");
// GroupNames label

G:=SmallGroup(288,144);
// by ID

G=gap.SmallGroup(288,144);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,219,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^18=1,d^2=c^9,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽