extension | φ:Q→Out N | d | ρ | Label | ID |
(Dic3×C12)⋊1C2 = Dic3.D12 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):1C2 | 288,500 |
(Dic3×C12)⋊2C2 = Dic3⋊4D12 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):2C2 | 288,528 |
(Dic3×C12)⋊3C2 = C4×C3⋊D12 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):3C2 | 288,551 |
(Dic3×C12)⋊4C2 = D12⋊2Dic3 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | 4 | (Dic3xC12):4C2 | 288,217 |
(Dic3×C12)⋊5C2 = C12.80D12 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | 4 | (Dic3xC12):5C2 | 288,218 |
(Dic3×C12)⋊6C2 = C3×D12⋊C4 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | 4 | (Dic3xC12):6C2 | 288,259 |
(Dic3×C12)⋊7C2 = C3×Q8⋊3Dic3 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | 4 | (Dic3xC12):7C2 | 288,271 |
(Dic3×C12)⋊8C2 = C12.27D12 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12):8C2 | 288,508 |
(Dic3×C12)⋊9C2 = C12.28D12 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):9C2 | 288,512 |
(Dic3×C12)⋊10C2 = Dic3×D12 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12):10C2 | 288,540 |
(Dic3×C12)⋊11C2 = Dic3⋊5D12 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):11C2 | 288,542 |
(Dic3×C12)⋊12C2 = C12⋊D12 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):12C2 | 288,559 |
(Dic3×C12)⋊13C2 = C3×Dic3⋊5D4 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12):13C2 | 288,664 |
(Dic3×C12)⋊14C2 = C3×D4×Dic3 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):14C2 | 288,705 |
(Dic3×C12)⋊15C2 = C3×C23.12D6 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):15C2 | 288,707 |
(Dic3×C12)⋊16C2 = C3×C12⋊3D4 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):16C2 | 288,711 |
(Dic3×C12)⋊17C2 = C3×C12.23D4 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12):17C2 | 288,718 |
(Dic3×C12)⋊18C2 = C62.6C23 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):18C2 | 288,484 |
(Dic3×C12)⋊19C2 = C62.25C23 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12):19C2 | 288,503 |
(Dic3×C12)⋊20C2 = C62.29C23 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12):20C2 | 288,507 |
(Dic3×C12)⋊21C2 = C62.38C23 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):21C2 | 288,516 |
(Dic3×C12)⋊22C2 = C62.44C23 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):22C2 | 288,522 |
(Dic3×C12)⋊23C2 = C4×S3×Dic3 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12):23C2 | 288,523 |
(Dic3×C12)⋊24C2 = C62.47C23 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12):24C2 | 288,525 |
(Dic3×C12)⋊25C2 = C4×C6.D6 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):25C2 | 288,530 |
(Dic3×C12)⋊26C2 = C3×C42⋊2S3 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12):26C2 | 288,643 |
(Dic3×C12)⋊27C2 = C3×C23.16D6 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):27C2 | 288,648 |
(Dic3×C12)⋊28C2 = C3×C23.8D6 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):28C2 | 288,650 |
(Dic3×C12)⋊29C2 = C3×C4⋊C4⋊7S3 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12):29C2 | 288,663 |
(Dic3×C12)⋊30C2 = C3×C4⋊C4⋊S3 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12):30C2 | 288,669 |
(Dic3×C12)⋊31C2 = C3×C23.26D6 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):31C2 | 288,697 |
(Dic3×C12)⋊32C2 = C3×Dic3⋊4D4 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):32C2 | 288,652 |
(Dic3×C12)⋊33C2 = C3×C23.11D6 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):33C2 | 288,656 |
(Dic3×C12)⋊34C2 = C12×C3⋊D4 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 48 | | (Dic3xC12):34C2 | 288,699 |
(Dic3×C12)⋊35C2 = S3×C4×C12 | φ: trivial image | 96 | | (Dic3xC12):35C2 | 288,642 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(Dic3×C12).1C2 = C12.81D12 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).1C2 | 288,219 |
(Dic3×C12).2C2 = Dic3⋊5Dic6 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).2C2 | 288,485 |
(Dic3×C12).3C2 = C62.37C23 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).3C2 | 288,515 |
(Dic3×C12).4C2 = C4×C32⋊2Q8 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).4C2 | 288,565 |
(Dic3×C12).5C2 = Dic3×Dic6 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).5C2 | 288,490 |
(Dic3×C12).6C2 = Dic3⋊6Dic6 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).6C2 | 288,492 |
(Dic3×C12).7C2 = Dic3⋊Dic6 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).7C2 | 288,514 |
(Dic3×C12).8C2 = C62.39C23 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).8C2 | 288,517 |
(Dic3×C12).9C2 = C12⋊3Dic6 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).9C2 | 288,566 |
(Dic3×C12).10C2 = C3×C12⋊Q8 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).10C2 | 288,659 |
(Dic3×C12).11C2 = C3×C4.Dic6 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).11C2 | 288,661 |
(Dic3×C12).12C2 = C3×Dic3⋊Q8 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).12C2 | 288,715 |
(Dic3×C12).13C2 = C3×Q8×Dic3 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).13C2 | 288,716 |
(Dic3×C12).14C2 = Dic3×C3⋊C8 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).14C2 | 288,200 |
(Dic3×C12).15C2 = C3⋊C8⋊Dic3 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).15C2 | 288,202 |
(Dic3×C12).16C2 = C3×C24⋊C4 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).16C2 | 288,249 |
(Dic3×C12).17C2 = C3×Dic3⋊C8 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).17C2 | 288,248 |
(Dic3×C12).18C2 = C12×Dic6 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).18C2 | 288,639 |
(Dic3×C12).19C2 = C3×Dic6⋊C4 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).19C2 | 288,658 |
(Dic3×C12).20C2 = C3×Dic3.Q8 | φ: C2/C1 → C2 ⊆ Out Dic3×C12 | 96 | | (Dic3xC12).20C2 | 288,660 |
(Dic3×C12).21C2 = Dic3×C24 | φ: trivial image | 96 | | (Dic3xC12).21C2 | 288,247 |