Copied to
clipboard

G = C2×C13⋊A4order 312 = 23·3·13

Direct product of C2 and C13⋊A4

direct product, metabelian, soluble, monomial, A-group

Aliases: C2×C13⋊A4, C26⋊A4, C132(C2×A4), C23⋊(C13⋊C3), (C2×C26)⋊7C6, (C22×C26)⋊3C3, C22⋊(C2×C13⋊C3), SmallGroup(312,57)

Series: Derived Chief Lower central Upper central

C1C2×C26 — C2×C13⋊A4
C1C13C2×C26C13⋊A4 — C2×C13⋊A4
C2×C26 — C2×C13⋊A4
C1C2

Generators and relations for C2×C13⋊A4
 G = < a,b,c,d,e | a2=b13=c2=d2=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=b9, ece-1=cd=dc, ede-1=c >

3C2
3C2
52C3
3C22
3C22
52C6
3C26
3C26
4C13⋊C3
13A4
3C2×C26
3C2×C26
4C2×C13⋊C3
13C2×A4

Smallest permutation representation of C2×C13⋊A4
On 78 points
Generators in S78
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(27 48)(28 49)(29 50)(30 51)(31 52)(32 40)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(53 78)(54 66)(55 67)(56 68)(57 69)(58 70)(59 71)(60 72)(61 73)(62 74)(63 75)(64 76)(65 77)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(27 48)(28 49)(29 50)(30 51)(31 52)(32 40)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(53 78)(54 66)(55 67)(56 68)(57 69)(58 70)(59 71)(60 72)(61 73)(62 74)(63 75)(64 76)(65 77)
(1 53 27)(2 56 36)(3 59 32)(4 62 28)(5 65 37)(6 55 33)(7 58 29)(8 61 38)(9 64 34)(10 54 30)(11 57 39)(12 60 35)(13 63 31)(14 78 48)(15 68 44)(16 71 40)(17 74 49)(18 77 45)(19 67 41)(20 70 50)(21 73 46)(22 76 42)(23 66 51)(24 69 47)(25 72 43)(26 75 52)

G:=sub<Sym(78)| (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,48)(28,49)(29,50)(30,51)(31,52)(32,40)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(53,78)(54,66)(55,67)(56,68)(57,69)(58,70)(59,71)(60,72)(61,73)(62,74)(63,75)(64,76)(65,77), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,48)(28,49)(29,50)(30,51)(31,52)(32,40)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(53,78)(54,66)(55,67)(56,68)(57,69)(58,70)(59,71)(60,72)(61,73)(62,74)(63,75)(64,76)(65,77), (1,53,27)(2,56,36)(3,59,32)(4,62,28)(5,65,37)(6,55,33)(7,58,29)(8,61,38)(9,64,34)(10,54,30)(11,57,39)(12,60,35)(13,63,31)(14,78,48)(15,68,44)(16,71,40)(17,74,49)(18,77,45)(19,67,41)(20,70,50)(21,73,46)(22,76,42)(23,66,51)(24,69,47)(25,72,43)(26,75,52)>;

G:=Group( (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,48)(28,49)(29,50)(30,51)(31,52)(32,40)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(53,78)(54,66)(55,67)(56,68)(57,69)(58,70)(59,71)(60,72)(61,73)(62,74)(63,75)(64,76)(65,77), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,48)(28,49)(29,50)(30,51)(31,52)(32,40)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(53,78)(54,66)(55,67)(56,68)(57,69)(58,70)(59,71)(60,72)(61,73)(62,74)(63,75)(64,76)(65,77), (1,53,27)(2,56,36)(3,59,32)(4,62,28)(5,65,37)(6,55,33)(7,58,29)(8,61,38)(9,64,34)(10,54,30)(11,57,39)(12,60,35)(13,63,31)(14,78,48)(15,68,44)(16,71,40)(17,74,49)(18,77,45)(19,67,41)(20,70,50)(21,73,46)(22,76,42)(23,66,51)(24,69,47)(25,72,43)(26,75,52) );

G=PermutationGroup([[(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(27,48),(28,49),(29,50),(30,51),(31,52),(32,40),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(53,78),(54,66),(55,67),(56,68),(57,69),(58,70),(59,71),(60,72),(61,73),(62,74),(63,75),(64,76),(65,77)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(27,48),(28,49),(29,50),(30,51),(31,52),(32,40),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(53,78),(54,66),(55,67),(56,68),(57,69),(58,70),(59,71),(60,72),(61,73),(62,74),(63,75),(64,76),(65,77)], [(1,53,27),(2,56,36),(3,59,32),(4,62,28),(5,65,37),(6,55,33),(7,58,29),(8,61,38),(9,64,34),(10,54,30),(11,57,39),(12,60,35),(13,63,31),(14,78,48),(15,68,44),(16,71,40),(17,74,49),(18,77,45),(19,67,41),(20,70,50),(21,73,46),(22,76,42),(23,66,51),(24,69,47),(25,72,43),(26,75,52)]])

40 conjugacy classes

class 1 2A2B2C3A3B6A6B13A13B13C13D26A···26AB
order122233661313131326···26
size11335252525233333···3

40 irreducible representations

dim1111333333
type++++
imageC1C2C3C6A4C2×A4C13⋊C3C2×C13⋊C3C13⋊A4C2×C13⋊A4
kernelC2×C13⋊A4C13⋊A4C22×C26C2×C26C26C13C23C22C2C1
# reps112211441212

Matrix representation of C2×C13⋊A4 in GL3(𝔽79) generated by

7800
0780
0078
,
5200
0670
0010
,
7800
0780
001
,
7800
010
0078
,
010
001
100
G:=sub<GL(3,GF(79))| [78,0,0,0,78,0,0,0,78],[52,0,0,0,67,0,0,0,10],[78,0,0,0,78,0,0,0,1],[78,0,0,0,1,0,0,0,78],[0,0,1,1,0,0,0,1,0] >;

C2×C13⋊A4 in GAP, Magma, Sage, TeX

C_2\times C_{13}\rtimes A_4
% in TeX

G:=Group("C2xC13:A4");
// GroupNames label

G:=SmallGroup(312,57);
// by ID

G=gap.SmallGroup(312,57);
# by ID

G:=PCGroup([5,-2,-3,-2,2,-13,97,188,909]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^13=c^2=d^2=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^9,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of C2×C13⋊A4 in TeX

׿
×
𝔽