Copied to
clipboard

G = C2×C6×D13order 312 = 23·3·13

Direct product of C2×C6 and D13

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C6×D13, C393C23, C783C22, C263(C2×C6), (C2×C78)⋊5C2, (C2×C26)⋊11C6, C133(C22×C6), SmallGroup(312,58)

Series: Derived Chief Lower central Upper central

C1C13 — C2×C6×D13
C1C13C39C3×D13C6×D13 — C2×C6×D13
C13 — C2×C6×D13
C1C2×C6

Generators and relations for C2×C6×D13
 G = < a,b,c,d | a2=b6=c13=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 328 in 64 conjugacy classes, 42 normal (10 characteristic)
C1, C2, C2, C3, C22, C22, C6, C6, C23, C2×C6, C2×C6, C13, C22×C6, D13, C26, C39, D26, C2×C26, C3×D13, C78, C22×D13, C6×D13, C2×C78, C2×C6×D13
Quotients: C1, C2, C3, C22, C6, C23, C2×C6, C22×C6, D13, D26, C3×D13, C22×D13, C6×D13, C2×C6×D13

Smallest permutation representation of C2×C6×D13
On 156 points
Generators in S156
(1 127)(2 128)(3 129)(4 130)(5 118)(6 119)(7 120)(8 121)(9 122)(10 123)(11 124)(12 125)(13 126)(14 137)(15 138)(16 139)(17 140)(18 141)(19 142)(20 143)(21 131)(22 132)(23 133)(24 134)(25 135)(26 136)(27 146)(28 147)(29 148)(30 149)(31 150)(32 151)(33 152)(34 153)(35 154)(36 155)(37 156)(38 144)(39 145)(40 80)(41 81)(42 82)(43 83)(44 84)(45 85)(46 86)(47 87)(48 88)(49 89)(50 90)(51 91)(52 79)(53 97)(54 98)(55 99)(56 100)(57 101)(58 102)(59 103)(60 104)(61 92)(62 93)(63 94)(64 95)(65 96)(66 117)(67 105)(68 106)(69 107)(70 108)(71 109)(72 110)(73 111)(74 112)(75 113)(76 114)(77 115)(78 116)
(1 59 31 51 15 67)(2 60 32 52 16 68)(3 61 33 40 17 69)(4 62 34 41 18 70)(5 63 35 42 19 71)(6 64 36 43 20 72)(7 65 37 44 21 73)(8 53 38 45 22 74)(9 54 39 46 23 75)(10 55 27 47 24 76)(11 56 28 48 25 77)(12 57 29 49 26 78)(13 58 30 50 14 66)(79 139 106 128 104 151)(80 140 107 129 92 152)(81 141 108 130 93 153)(82 142 109 118 94 154)(83 143 110 119 95 155)(84 131 111 120 96 156)(85 132 112 121 97 144)(86 133 113 122 98 145)(87 134 114 123 99 146)(88 135 115 124 100 147)(89 136 116 125 101 148)(90 137 117 126 102 149)(91 138 105 127 103 150)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140 141 142 143)(144 145 146 147 148 149 150 151 152 153 154 155 156)
(1 50)(2 49)(3 48)(4 47)(5 46)(6 45)(7 44)(8 43)(9 42)(10 41)(11 40)(12 52)(13 51)(14 59)(15 58)(16 57)(17 56)(18 55)(19 54)(20 53)(21 65)(22 64)(23 63)(24 62)(25 61)(26 60)(27 70)(28 69)(29 68)(30 67)(31 66)(32 78)(33 77)(34 76)(35 75)(36 74)(37 73)(38 72)(39 71)(79 125)(80 124)(81 123)(82 122)(83 121)(84 120)(85 119)(86 118)(87 130)(88 129)(89 128)(90 127)(91 126)(92 135)(93 134)(94 133)(95 132)(96 131)(97 143)(98 142)(99 141)(100 140)(101 139)(102 138)(103 137)(104 136)(105 149)(106 148)(107 147)(108 146)(109 145)(110 144)(111 156)(112 155)(113 154)(114 153)(115 152)(116 151)(117 150)

G:=sub<Sym(156)| (1,127)(2,128)(3,129)(4,130)(5,118)(6,119)(7,120)(8,121)(9,122)(10,123)(11,124)(12,125)(13,126)(14,137)(15,138)(16,139)(17,140)(18,141)(19,142)(20,143)(21,131)(22,132)(23,133)(24,134)(25,135)(26,136)(27,146)(28,147)(29,148)(30,149)(31,150)(32,151)(33,152)(34,153)(35,154)(36,155)(37,156)(38,144)(39,145)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(51,91)(52,79)(53,97)(54,98)(55,99)(56,100)(57,101)(58,102)(59,103)(60,104)(61,92)(62,93)(63,94)(64,95)(65,96)(66,117)(67,105)(68,106)(69,107)(70,108)(71,109)(72,110)(73,111)(74,112)(75,113)(76,114)(77,115)(78,116), (1,59,31,51,15,67)(2,60,32,52,16,68)(3,61,33,40,17,69)(4,62,34,41,18,70)(5,63,35,42,19,71)(6,64,36,43,20,72)(7,65,37,44,21,73)(8,53,38,45,22,74)(9,54,39,46,23,75)(10,55,27,47,24,76)(11,56,28,48,25,77)(12,57,29,49,26,78)(13,58,30,50,14,66)(79,139,106,128,104,151)(80,140,107,129,92,152)(81,141,108,130,93,153)(82,142,109,118,94,154)(83,143,110,119,95,155)(84,131,111,120,96,156)(85,132,112,121,97,144)(86,133,113,122,98,145)(87,134,114,123,99,146)(88,135,115,124,100,147)(89,136,116,125,101,148)(90,137,117,126,102,149)(91,138,105,127,103,150), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154,155,156), (1,50)(2,49)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,42)(10,41)(11,40)(12,52)(13,51)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,65)(22,64)(23,63)(24,62)(25,61)(26,60)(27,70)(28,69)(29,68)(30,67)(31,66)(32,78)(33,77)(34,76)(35,75)(36,74)(37,73)(38,72)(39,71)(79,125)(80,124)(81,123)(82,122)(83,121)(84,120)(85,119)(86,118)(87,130)(88,129)(89,128)(90,127)(91,126)(92,135)(93,134)(94,133)(95,132)(96,131)(97,143)(98,142)(99,141)(100,140)(101,139)(102,138)(103,137)(104,136)(105,149)(106,148)(107,147)(108,146)(109,145)(110,144)(111,156)(112,155)(113,154)(114,153)(115,152)(116,151)(117,150)>;

G:=Group( (1,127)(2,128)(3,129)(4,130)(5,118)(6,119)(7,120)(8,121)(9,122)(10,123)(11,124)(12,125)(13,126)(14,137)(15,138)(16,139)(17,140)(18,141)(19,142)(20,143)(21,131)(22,132)(23,133)(24,134)(25,135)(26,136)(27,146)(28,147)(29,148)(30,149)(31,150)(32,151)(33,152)(34,153)(35,154)(36,155)(37,156)(38,144)(39,145)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(51,91)(52,79)(53,97)(54,98)(55,99)(56,100)(57,101)(58,102)(59,103)(60,104)(61,92)(62,93)(63,94)(64,95)(65,96)(66,117)(67,105)(68,106)(69,107)(70,108)(71,109)(72,110)(73,111)(74,112)(75,113)(76,114)(77,115)(78,116), (1,59,31,51,15,67)(2,60,32,52,16,68)(3,61,33,40,17,69)(4,62,34,41,18,70)(5,63,35,42,19,71)(6,64,36,43,20,72)(7,65,37,44,21,73)(8,53,38,45,22,74)(9,54,39,46,23,75)(10,55,27,47,24,76)(11,56,28,48,25,77)(12,57,29,49,26,78)(13,58,30,50,14,66)(79,139,106,128,104,151)(80,140,107,129,92,152)(81,141,108,130,93,153)(82,142,109,118,94,154)(83,143,110,119,95,155)(84,131,111,120,96,156)(85,132,112,121,97,144)(86,133,113,122,98,145)(87,134,114,123,99,146)(88,135,115,124,100,147)(89,136,116,125,101,148)(90,137,117,126,102,149)(91,138,105,127,103,150), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143)(144,145,146,147,148,149,150,151,152,153,154,155,156), (1,50)(2,49)(3,48)(4,47)(5,46)(6,45)(7,44)(8,43)(9,42)(10,41)(11,40)(12,52)(13,51)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,65)(22,64)(23,63)(24,62)(25,61)(26,60)(27,70)(28,69)(29,68)(30,67)(31,66)(32,78)(33,77)(34,76)(35,75)(36,74)(37,73)(38,72)(39,71)(79,125)(80,124)(81,123)(82,122)(83,121)(84,120)(85,119)(86,118)(87,130)(88,129)(89,128)(90,127)(91,126)(92,135)(93,134)(94,133)(95,132)(96,131)(97,143)(98,142)(99,141)(100,140)(101,139)(102,138)(103,137)(104,136)(105,149)(106,148)(107,147)(108,146)(109,145)(110,144)(111,156)(112,155)(113,154)(114,153)(115,152)(116,151)(117,150) );

G=PermutationGroup([[(1,127),(2,128),(3,129),(4,130),(5,118),(6,119),(7,120),(8,121),(9,122),(10,123),(11,124),(12,125),(13,126),(14,137),(15,138),(16,139),(17,140),(18,141),(19,142),(20,143),(21,131),(22,132),(23,133),(24,134),(25,135),(26,136),(27,146),(28,147),(29,148),(30,149),(31,150),(32,151),(33,152),(34,153),(35,154),(36,155),(37,156),(38,144),(39,145),(40,80),(41,81),(42,82),(43,83),(44,84),(45,85),(46,86),(47,87),(48,88),(49,89),(50,90),(51,91),(52,79),(53,97),(54,98),(55,99),(56,100),(57,101),(58,102),(59,103),(60,104),(61,92),(62,93),(63,94),(64,95),(65,96),(66,117),(67,105),(68,106),(69,107),(70,108),(71,109),(72,110),(73,111),(74,112),(75,113),(76,114),(77,115),(78,116)], [(1,59,31,51,15,67),(2,60,32,52,16,68),(3,61,33,40,17,69),(4,62,34,41,18,70),(5,63,35,42,19,71),(6,64,36,43,20,72),(7,65,37,44,21,73),(8,53,38,45,22,74),(9,54,39,46,23,75),(10,55,27,47,24,76),(11,56,28,48,25,77),(12,57,29,49,26,78),(13,58,30,50,14,66),(79,139,106,128,104,151),(80,140,107,129,92,152),(81,141,108,130,93,153),(82,142,109,118,94,154),(83,143,110,119,95,155),(84,131,111,120,96,156),(85,132,112,121,97,144),(86,133,113,122,98,145),(87,134,114,123,99,146),(88,135,115,124,100,147),(89,136,116,125,101,148),(90,137,117,126,102,149),(91,138,105,127,103,150)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140,141,142,143),(144,145,146,147,148,149,150,151,152,153,154,155,156)], [(1,50),(2,49),(3,48),(4,47),(5,46),(6,45),(7,44),(8,43),(9,42),(10,41),(11,40),(12,52),(13,51),(14,59),(15,58),(16,57),(17,56),(18,55),(19,54),(20,53),(21,65),(22,64),(23,63),(24,62),(25,61),(26,60),(27,70),(28,69),(29,68),(30,67),(31,66),(32,78),(33,77),(34,76),(35,75),(36,74),(37,73),(38,72),(39,71),(79,125),(80,124),(81,123),(82,122),(83,121),(84,120),(85,119),(86,118),(87,130),(88,129),(89,128),(90,127),(91,126),(92,135),(93,134),(94,133),(95,132),(96,131),(97,143),(98,142),(99,141),(100,140),(101,139),(102,138),(103,137),(104,136),(105,149),(106,148),(107,147),(108,146),(109,145),(110,144),(111,156),(112,155),(113,154),(114,153),(115,152),(116,151),(117,150)]])

96 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B6A···6F6G···6N13A···13F26A···26R39A···39L78A···78AJ
order12222222336···66···613···1326···2639···3978···78
size111113131313111···113···132···22···22···22···2

96 irreducible representations

dim1111112222
type+++++
imageC1C2C2C3C6C6D13D26C3×D13C6×D13
kernelC2×C6×D13C6×D13C2×C78C22×D13D26C2×C26C2×C6C6C22C2
# reps16121226181236

Matrix representation of C2×C6×D13 in GL4(𝔽79) generated by

1000
07800
0010
0001
,
78000
05500
00230
00023
,
1000
0100
00451
006140
,
1000
07800
004078
001939
G:=sub<GL(4,GF(79))| [1,0,0,0,0,78,0,0,0,0,1,0,0,0,0,1],[78,0,0,0,0,55,0,0,0,0,23,0,0,0,0,23],[1,0,0,0,0,1,0,0,0,0,45,61,0,0,1,40],[1,0,0,0,0,78,0,0,0,0,40,19,0,0,78,39] >;

C2×C6×D13 in GAP, Magma, Sage, TeX

C_2\times C_6\times D_{13}
% in TeX

G:=Group("C2xC6xD13");
// GroupNames label

G:=SmallGroup(312,58);
// by ID

G=gap.SmallGroup(312,58);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-13,7204]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^6=c^13=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽