Extensions 1→N→G→Q→1 with N=C2×C26 and Q=C6

Direct product G=N×Q with N=C2×C26 and Q=C6
dρLabelID
C22×C78312C2^2xC78312,61

Semidirect products G=N:Q with N=C2×C26 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C2×C26)⋊1C6 = A4×D13φ: C6/C1C6 ⊆ Aut C2×C26526+(C2xC26):1C6312,50
(C2×C26)⋊2C6 = D13⋊A4φ: C6/C1C6 ⊆ Aut C2×C26526+(C2xC26):2C6312,51
(C2×C26)⋊3C6 = D26⋊C6φ: C6/C1C6 ⊆ Aut C2×C26526(C2xC26):3C6312,12
(C2×C26)⋊4C6 = C22×C13⋊C6φ: C6/C1C6 ⊆ Aut C2×C2652(C2xC26):4C6312,49
(C2×C26)⋊5C6 = D4×C13⋊C3φ: C6/C1C6 ⊆ Aut C2×C26526(C2xC26):5C6312,23
(C2×C26)⋊6C6 = A4×C26φ: C6/C2C3 ⊆ Aut C2×C26783(C2xC26):6C6312,56
(C2×C26)⋊7C6 = C2×C13⋊A4φ: C6/C2C3 ⊆ Aut C2×C26783(C2xC26):7C6312,57
(C2×C26)⋊8C6 = C23×C13⋊C3φ: C6/C2C3 ⊆ Aut C2×C26104(C2xC26):8C6312,55
(C2×C26)⋊9C6 = D4×C39φ: C6/C3C2 ⊆ Aut C2×C261562(C2xC26):9C6312,43
(C2×C26)⋊10C6 = C3×C13⋊D4φ: C6/C3C2 ⊆ Aut C2×C261562(C2xC26):10C6312,31
(C2×C26)⋊11C6 = C2×C6×D13φ: C6/C3C2 ⊆ Aut C2×C26156(C2xC26):11C6312,58

Non-split extensions G=N.Q with N=C2×C26 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C2×C26).C6 = C2×C26.C6φ: C6/C1C6 ⊆ Aut C2×C26104(C2xC26).C6312,11
(C2×C26).2C6 = C2×C4×C13⋊C3φ: C6/C2C3 ⊆ Aut C2×C26104(C2xC26).2C6312,22
(C2×C26).3C6 = C6×Dic13φ: C6/C3C2 ⊆ Aut C2×C26312(C2xC26).3C6312,30

׿
×
𝔽