Copied to
clipboard

G = C39⋊C4order 156 = 22·3·13

1st semidirect product of C39 and C4 acting faithfully

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C391C4, C13⋊Dic3, D13.S3, C3⋊(C13⋊C4), (C3×D13).1C2, SmallGroup(156,10)

Series: Derived Chief Lower central Upper central

C1C39 — C39⋊C4
C1C13C39C3×D13 — C39⋊C4
C39 — C39⋊C4
C1

Generators and relations for C39⋊C4
 G = < a,b | a39=b4=1, bab-1=a8 >

13C2
39C4
13C6
13Dic3
3C13⋊C4

Character table of C39⋊C4

 class 1234A4B613A13B13C39A39B39C39D39E39F
 size 1132393926444444444
ρ1111111111111111    trivial
ρ2111-1-11111111111    linear of order 2
ρ31-11i-i-1111111111    linear of order 4
ρ41-11-ii-1111111111    linear of order 4
ρ522-100-1222-1-1-1-1-1-1    orthogonal lifted from S3
ρ62-2-1001222-1-1-1-1-1-1    symplectic lifted from Dic3, Schur index 2
ρ7404000ζ13111310133132ζ131213813513ζ139137136134ζ139137136134ζ131213813513ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513    orthogonal lifted from C13⋊C4
ρ8404000ζ139137136134ζ13111310133132ζ131213813513ζ131213813513ζ13111310133132ζ139137136134ζ139137136134ζ131213813513ζ13111310133132    orthogonal lifted from C13⋊C4
ρ9404000ζ131213813513ζ139137136134ζ13111310133132ζ13111310133132ζ139137136134ζ131213813513ζ131213813513ζ13111310133132ζ139137136134    orthogonal lifted from C13⋊C4
ρ1040-2000ζ139137136134ζ13111310133132ζ1312138135133ζ13123ζ1383ζ1353ζ131312133ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ13413713632ζ13932ζ13732ζ13632ζ134139134ζ3ζ13123ζ1383ζ1353ζ1313813532ζ131132ζ131032ζ13332ζ1321311132    complex faithful
ρ1140-2000ζ139137136134ζ13111310133132ζ131213813513ζ3ζ13123ζ1383ζ1353ζ1313813532ζ131132ζ131032ζ13332ζ132131113232ζ13932ζ13732ζ13632ζ134139134ζ32ζ13932ζ13732ζ13632ζ1341371363ζ13123ζ1383ζ1353ζ131312133ζ13113ζ13103ζ1333ζ1321311132    complex faithful
ρ1240-2000ζ131213813513ζ139137136134ζ131113101331323ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ134137136ζ3ζ13123ζ1383ζ1353ζ131381353ζ13123ζ1383ζ1353ζ1313121332ζ131132ζ131032ζ13332ζ132131113232ζ13932ζ13732ζ13632ζ134139134    complex faithful
ρ1340-2000ζ13111310133132ζ131213813513ζ13913713613432ζ13932ζ13732ζ13632ζ1341391343ζ13123ζ1383ζ1353ζ131312133ζ13113ζ13103ζ1333ζ132131113232ζ131132ζ131032ζ13332ζ1321311132ζ32ζ13932ζ13732ζ13632ζ134137136ζ3ζ13123ζ1383ζ1353ζ13138135    complex faithful
ρ1440-2000ζ13111310133132ζ131213813513ζ139137136134ζ32ζ13932ζ13732ζ13632ζ134137136ζ3ζ13123ζ1383ζ1353ζ1313813532ζ131132ζ131032ζ13332ζ13213111323ζ13113ζ13103ζ1333ζ132131113232ζ13932ζ13732ζ13632ζ1341391343ζ13123ζ1383ζ1353ζ13131213    complex faithful
ρ1540-2000ζ131213813513ζ139137136134ζ1311131013313232ζ131132ζ131032ζ13332ζ132131113232ζ13932ζ13732ζ13632ζ1341391343ζ13123ζ1383ζ1353ζ13131213ζ3ζ13123ζ1383ζ1353ζ131381353ζ13113ζ13103ζ1333ζ1321311132ζ32ζ13932ζ13732ζ13632ζ134137136    complex faithful

Smallest permutation representation of C39⋊C4
On 39 points
Generators in S39
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39)
(2 6 26 9)(3 11 12 17)(4 16 37 25)(5 21 23 33)(7 31 34 10)(8 36 20 18)(13 22 28 19)(14 27)(15 32 39 35)(24 38 30 29)

G:=sub<Sym(39)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39), (2,6,26,9)(3,11,12,17)(4,16,37,25)(5,21,23,33)(7,31,34,10)(8,36,20,18)(13,22,28,19)(14,27)(15,32,39,35)(24,38,30,29)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39), (2,6,26,9)(3,11,12,17)(4,16,37,25)(5,21,23,33)(7,31,34,10)(8,36,20,18)(13,22,28,19)(14,27)(15,32,39,35)(24,38,30,29) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39)], [(2,6,26,9),(3,11,12,17),(4,16,37,25),(5,21,23,33),(7,31,34,10),(8,36,20,18),(13,22,28,19),(14,27),(15,32,39,35),(24,38,30,29)]])

C39⋊C4 is a maximal subgroup of   S3×C13⋊C4  C13⋊Dic9  C3⋊F13  C39⋊Dic3
C39⋊C4 is a maximal quotient of   C39⋊C8  C13⋊Dic9  C39⋊Dic3

Matrix representation of C39⋊C4 in GL4(𝔽5) generated by

2024
2204
3020
0433
,
1210
0431
0100
0140
G:=sub<GL(4,GF(5))| [2,2,3,0,0,2,0,4,2,0,2,3,4,4,0,3],[1,0,0,0,2,4,1,1,1,3,0,4,0,1,0,0] >;

C39⋊C4 in GAP, Magma, Sage, TeX

C_{39}\rtimes C_4
% in TeX

G:=Group("C39:C4");
// GroupNames label

G:=SmallGroup(156,10);
// by ID

G=gap.SmallGroup(156,10);
# by ID

G:=PCGroup([4,-2,-2,-3,-13,8,98,963,1159]);
// Polycyclic

G:=Group<a,b|a^39=b^4=1,b*a*b^-1=a^8>;
// generators/relations

Export

Subgroup lattice of C39⋊C4 in TeX
Character table of C39⋊C4 in TeX

׿
×
𝔽