direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C3×C25⋊C4, C25⋊C12, C75⋊2C4, D25.C6, C15.2F5, C5.(C3×F5), (C3×D25).2C2, SmallGroup(300,5)
Series: Derived ►Chief ►Lower central ►Upper central
C25 — C3×C25⋊C4 |
Generators and relations for C3×C25⋊C4
G = < a,b,c | a3=b25=c4=1, ab=ba, ac=ca, cbc-1=b18 >
Character table of C3×C25⋊C4
class | 1 | 2 | 3A | 3B | 4A | 4B | 5 | 6A | 6B | 12A | 12B | 12C | 12D | 15A | 15B | 25A | 25B | 25C | 25D | 25E | 75A | 75B | 75C | 75D | 75E | 75F | 75G | 75H | 75I | 75J | |
size | 1 | 25 | 1 | 1 | 25 | 25 | 4 | 25 | 25 | 25 | 25 | 25 | 25 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | 1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | ζ6 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 6 |
ρ4 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ5 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | 1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | ζ65 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 6 |
ρ7 | 1 | -1 | 1 | 1 | i | -i | 1 | -1 | -1 | i | -i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | 1 | -i | i | 1 | -1 | -1 | -i | i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 1 | -1 | ζ3 | ζ32 | -i | i | 1 | ζ65 | ζ6 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 12 |
ρ10 | 1 | -1 | ζ32 | ζ3 | i | -i | 1 | ζ6 | ζ65 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 12 |
ρ11 | 1 | -1 | ζ32 | ζ3 | -i | i | 1 | ζ6 | ζ65 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 12 |
ρ12 | 1 | -1 | ζ3 | ζ32 | i | -i | 1 | ζ65 | ζ6 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 12 |
ρ13 | 4 | 0 | 4 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ14 | 4 | 0 | 4 | 4 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2519+ζ2517+ζ258+ζ256 | orthogonal lifted from C25⋊C4 |
ρ15 | 4 | 0 | 4 | 4 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2522+ζ2521+ζ254+ζ253 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2523+ζ2514+ζ2511+ζ252 | orthogonal lifted from C25⋊C4 |
ρ16 | 4 | 0 | 4 | 4 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2524+ζ2518+ζ257+ζ25 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2516+ζ2513+ζ2512+ζ259 | orthogonal lifted from C25⋊C4 |
ρ17 | 4 | 0 | 4 | 4 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2519+ζ2517+ζ258+ζ256 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2522+ζ2521+ζ254+ζ253 | orthogonal lifted from C25⋊C4 |
ρ18 | 4 | 0 | 4 | 4 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2524+ζ2518+ζ257+ζ25 | orthogonal lifted from C25⋊C4 |
ρ19 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2-2√-3 | -2+2√-3 | -1 | -1 | -1 | -1 | -1 | ζ6 | ζ65 | ζ65 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | complex lifted from C3×F5 |
ρ20 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2+2√-3 | -2-2√-3 | -1 | -1 | -1 | -1 | -1 | ζ65 | ζ6 | ζ6 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | complex lifted from C3×F5 |
ρ21 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ3ζ2519+ζ3ζ2517+ζ3ζ258+ζ3ζ256 | ζ32ζ2524+ζ32ζ2518+ζ32ζ257+ζ32ζ25 | ζ32ζ2519+ζ32ζ2517+ζ32ζ258+ζ32ζ256 | ζ3ζ2523+ζ3ζ2514+ζ3ζ2511+ζ3ζ252 | ζ32ζ2523+ζ32ζ2514+ζ32ζ2511+ζ32ζ252 | ζ32ζ2516+ζ32ζ2513+ζ32ζ2512+ζ32ζ259 | ζ3ζ2516+ζ3ζ2513+ζ3ζ2512+ζ3ζ259 | ζ3ζ2522+ζ3ζ2521+ζ3ζ254+ζ3ζ253 | ζ3ζ2524+ζ3ζ2518+ζ3ζ257+ζ3ζ25 | ζ32ζ2522+ζ32ζ2521+ζ32ζ254+ζ32ζ253 | complex faithful |
ρ22 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ32ζ2524+ζ32ζ2518+ζ32ζ257+ζ32ζ25 | ζ3ζ2522+ζ3ζ2521+ζ3ζ254+ζ3ζ253 | ζ3ζ2524+ζ3ζ2518+ζ3ζ257+ζ3ζ25 | ζ32ζ2519+ζ32ζ2517+ζ32ζ258+ζ32ζ256 | ζ3ζ2519+ζ3ζ2517+ζ3ζ258+ζ3ζ256 | ζ3ζ2523+ζ3ζ2514+ζ3ζ2511+ζ3ζ252 | ζ32ζ2523+ζ32ζ2514+ζ32ζ2511+ζ32ζ252 | ζ32ζ2516+ζ32ζ2513+ζ32ζ2512+ζ32ζ259 | ζ32ζ2522+ζ32ζ2521+ζ32ζ254+ζ32ζ253 | ζ3ζ2516+ζ3ζ2513+ζ3ζ2512+ζ3ζ259 | complex faithful |
ρ23 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ32ζ2519+ζ32ζ2517+ζ32ζ258+ζ32ζ256 | ζ3ζ2524+ζ3ζ2518+ζ3ζ257+ζ3ζ25 | ζ3ζ2519+ζ3ζ2517+ζ3ζ258+ζ3ζ256 | ζ32ζ2523+ζ32ζ2514+ζ32ζ2511+ζ32ζ252 | ζ3ζ2523+ζ3ζ2514+ζ3ζ2511+ζ3ζ252 | ζ3ζ2516+ζ3ζ2513+ζ3ζ2512+ζ3ζ259 | ζ32ζ2516+ζ32ζ2513+ζ32ζ2512+ζ32ζ259 | ζ32ζ2522+ζ32ζ2521+ζ32ζ254+ζ32ζ253 | ζ32ζ2524+ζ32ζ2518+ζ32ζ257+ζ32ζ25 | ζ3ζ2522+ζ3ζ2521+ζ3ζ254+ζ3ζ253 | complex faithful |
ρ24 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ3ζ2524+ζ3ζ2518+ζ3ζ257+ζ3ζ25 | ζ32ζ2522+ζ32ζ2521+ζ32ζ254+ζ32ζ253 | ζ32ζ2524+ζ32ζ2518+ζ32ζ257+ζ32ζ25 | ζ3ζ2519+ζ3ζ2517+ζ3ζ258+ζ3ζ256 | ζ32ζ2519+ζ32ζ2517+ζ32ζ258+ζ32ζ256 | ζ32ζ2523+ζ32ζ2514+ζ32ζ2511+ζ32ζ252 | ζ3ζ2523+ζ3ζ2514+ζ3ζ2511+ζ3ζ252 | ζ3ζ2516+ζ3ζ2513+ζ3ζ2512+ζ3ζ259 | ζ3ζ2522+ζ3ζ2521+ζ3ζ254+ζ3ζ253 | ζ32ζ2516+ζ32ζ2513+ζ32ζ2512+ζ32ζ259 | complex faithful |
ρ25 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ3ζ2523+ζ3ζ2514+ζ3ζ2511+ζ3ζ252 | ζ32ζ2519+ζ32ζ2517+ζ32ζ258+ζ32ζ256 | ζ32ζ2523+ζ32ζ2514+ζ32ζ2511+ζ32ζ252 | ζ3ζ2516+ζ3ζ2513+ζ3ζ2512+ζ3ζ259 | ζ32ζ2516+ζ32ζ2513+ζ32ζ2512+ζ32ζ259 | ζ32ζ2522+ζ32ζ2521+ζ32ζ254+ζ32ζ253 | ζ3ζ2522+ζ3ζ2521+ζ3ζ254+ζ3ζ253 | ζ3ζ2524+ζ3ζ2518+ζ3ζ257+ζ3ζ25 | ζ3ζ2519+ζ3ζ2517+ζ3ζ258+ζ3ζ256 | ζ32ζ2524+ζ32ζ2518+ζ32ζ257+ζ32ζ25 | complex faithful |
ρ26 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ3ζ2516+ζ3ζ2513+ζ3ζ2512+ζ3ζ259 | ζ32ζ2523+ζ32ζ2514+ζ32ζ2511+ζ32ζ252 | ζ32ζ2516+ζ32ζ2513+ζ32ζ2512+ζ32ζ259 | ζ3ζ2522+ζ3ζ2521+ζ3ζ254+ζ3ζ253 | ζ32ζ2522+ζ32ζ2521+ζ32ζ254+ζ32ζ253 | ζ32ζ2524+ζ32ζ2518+ζ32ζ257+ζ32ζ25 | ζ3ζ2524+ζ3ζ2518+ζ3ζ257+ζ3ζ25 | ζ3ζ2519+ζ3ζ2517+ζ3ζ258+ζ3ζ256 | ζ3ζ2523+ζ3ζ2514+ζ3ζ2511+ζ3ζ252 | ζ32ζ2519+ζ32ζ2517+ζ32ζ258+ζ32ζ256 | complex faithful |
ρ27 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ32ζ2522+ζ32ζ2521+ζ32ζ254+ζ32ζ253 | ζ3ζ2516+ζ3ζ2513+ζ3ζ2512+ζ3ζ259 | ζ3ζ2522+ζ3ζ2521+ζ3ζ254+ζ3ζ253 | ζ32ζ2524+ζ32ζ2518+ζ32ζ257+ζ32ζ25 | ζ3ζ2524+ζ3ζ2518+ζ3ζ257+ζ3ζ25 | ζ3ζ2519+ζ3ζ2517+ζ3ζ258+ζ3ζ256 | ζ32ζ2519+ζ32ζ2517+ζ32ζ258+ζ32ζ256 | ζ32ζ2523+ζ32ζ2514+ζ32ζ2511+ζ32ζ252 | ζ32ζ2516+ζ32ζ2513+ζ32ζ2512+ζ32ζ259 | ζ3ζ2523+ζ3ζ2514+ζ3ζ2511+ζ3ζ252 | complex faithful |
ρ28 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ32ζ2523+ζ32ζ2514+ζ32ζ2511+ζ32ζ252 | ζ3ζ2519+ζ3ζ2517+ζ3ζ258+ζ3ζ256 | ζ3ζ2523+ζ3ζ2514+ζ3ζ2511+ζ3ζ252 | ζ32ζ2516+ζ32ζ2513+ζ32ζ2512+ζ32ζ259 | ζ3ζ2516+ζ3ζ2513+ζ3ζ2512+ζ3ζ259 | ζ3ζ2522+ζ3ζ2521+ζ3ζ254+ζ3ζ253 | ζ32ζ2522+ζ32ζ2521+ζ32ζ254+ζ32ζ253 | ζ32ζ2524+ζ32ζ2518+ζ32ζ257+ζ32ζ25 | ζ32ζ2519+ζ32ζ2517+ζ32ζ258+ζ32ζ256 | ζ3ζ2524+ζ3ζ2518+ζ3ζ257+ζ3ζ25 | complex faithful |
ρ29 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ2519+ζ2517+ζ258+ζ256 | ζ3ζ2522+ζ3ζ2521+ζ3ζ254+ζ3ζ253 | ζ32ζ2516+ζ32ζ2513+ζ32ζ2512+ζ32ζ259 | ζ32ζ2522+ζ32ζ2521+ζ32ζ254+ζ32ζ253 | ζ3ζ2524+ζ3ζ2518+ζ3ζ257+ζ3ζ25 | ζ32ζ2524+ζ32ζ2518+ζ32ζ257+ζ32ζ25 | ζ32ζ2519+ζ32ζ2517+ζ32ζ258+ζ32ζ256 | ζ3ζ2519+ζ3ζ2517+ζ3ζ258+ζ3ζ256 | ζ3ζ2523+ζ3ζ2514+ζ3ζ2511+ζ3ζ252 | ζ3ζ2516+ζ3ζ2513+ζ3ζ2512+ζ3ζ259 | ζ32ζ2523+ζ32ζ2514+ζ32ζ2511+ζ32ζ252 | complex faithful |
ρ30 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | ζ2519+ζ2517+ζ258+ζ256 | ζ2523+ζ2514+ζ2511+ζ252 | ζ2516+ζ2513+ζ2512+ζ259 | ζ2522+ζ2521+ζ254+ζ253 | ζ2524+ζ2518+ζ257+ζ25 | ζ32ζ2516+ζ32ζ2513+ζ32ζ2512+ζ32ζ259 | ζ3ζ2523+ζ3ζ2514+ζ3ζ2511+ζ3ζ252 | ζ3ζ2516+ζ3ζ2513+ζ3ζ2512+ζ3ζ259 | ζ32ζ2522+ζ32ζ2521+ζ32ζ254+ζ32ζ253 | ζ3ζ2522+ζ3ζ2521+ζ3ζ254+ζ3ζ253 | ζ3ζ2524+ζ3ζ2518+ζ3ζ257+ζ3ζ25 | ζ32ζ2524+ζ32ζ2518+ζ32ζ257+ζ32ζ25 | ζ32ζ2519+ζ32ζ2517+ζ32ζ258+ζ32ζ256 | ζ32ζ2523+ζ32ζ2514+ζ32ζ2511+ζ32ζ252 | ζ3ζ2519+ζ3ζ2517+ζ3ζ258+ζ3ζ256 | complex faithful |
(1 68 45)(2 69 46)(3 70 47)(4 71 48)(5 72 49)(6 73 50)(7 74 26)(8 75 27)(9 51 28)(10 52 29)(11 53 30)(12 54 31)(13 55 32)(14 56 33)(15 57 34)(16 58 35)(17 59 36)(18 60 37)(19 61 38)(20 62 39)(21 63 40)(22 64 41)(23 65 42)(24 66 43)(25 67 44)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)
(2 8 25 19)(3 15 24 12)(4 22 23 5)(6 11 21 16)(7 18 20 9)(10 14 17 13)(26 37 39 28)(27 44 38 46)(29 33 36 32)(30 40 35 50)(31 47 34 43)(41 42 49 48)(51 74 60 62)(52 56 59 55)(53 63 58 73)(54 70 57 66)(61 69 75 67)(64 65 72 71)
G:=sub<Sym(75)| (1,68,45)(2,69,46)(3,70,47)(4,71,48)(5,72,49)(6,73,50)(7,74,26)(8,75,27)(9,51,28)(10,52,29)(11,53,30)(12,54,31)(13,55,32)(14,56,33)(15,57,34)(16,58,35)(17,59,36)(18,60,37)(19,61,38)(20,62,39)(21,63,40)(22,64,41)(23,65,42)(24,66,43)(25,67,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75), (2,8,25,19)(3,15,24,12)(4,22,23,5)(6,11,21,16)(7,18,20,9)(10,14,17,13)(26,37,39,28)(27,44,38,46)(29,33,36,32)(30,40,35,50)(31,47,34,43)(41,42,49,48)(51,74,60,62)(52,56,59,55)(53,63,58,73)(54,70,57,66)(61,69,75,67)(64,65,72,71)>;
G:=Group( (1,68,45)(2,69,46)(3,70,47)(4,71,48)(5,72,49)(6,73,50)(7,74,26)(8,75,27)(9,51,28)(10,52,29)(11,53,30)(12,54,31)(13,55,32)(14,56,33)(15,57,34)(16,58,35)(17,59,36)(18,60,37)(19,61,38)(20,62,39)(21,63,40)(22,64,41)(23,65,42)(24,66,43)(25,67,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75), (2,8,25,19)(3,15,24,12)(4,22,23,5)(6,11,21,16)(7,18,20,9)(10,14,17,13)(26,37,39,28)(27,44,38,46)(29,33,36,32)(30,40,35,50)(31,47,34,43)(41,42,49,48)(51,74,60,62)(52,56,59,55)(53,63,58,73)(54,70,57,66)(61,69,75,67)(64,65,72,71) );
G=PermutationGroup([[(1,68,45),(2,69,46),(3,70,47),(4,71,48),(5,72,49),(6,73,50),(7,74,26),(8,75,27),(9,51,28),(10,52,29),(11,53,30),(12,54,31),(13,55,32),(14,56,33),(15,57,34),(16,58,35),(17,59,36),(18,60,37),(19,61,38),(20,62,39),(21,63,40),(22,64,41),(23,65,42),(24,66,43),(25,67,44)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)], [(2,8,25,19),(3,15,24,12),(4,22,23,5),(6,11,21,16),(7,18,20,9),(10,14,17,13),(26,37,39,28),(27,44,38,46),(29,33,36,32),(30,40,35,50),(31,47,34,43),(41,42,49,48),(51,74,60,62),(52,56,59,55),(53,63,58,73),(54,70,57,66),(61,69,75,67),(64,65,72,71)]])
Matrix representation of C3×C25⋊C4 ►in GL4(𝔽7) generated by
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
6 | 6 | 1 | 6 |
5 | 5 | 3 | 6 |
1 | 0 | 6 | 0 |
4 | 2 | 1 | 6 |
1 | 5 | 0 | 0 |
1 | 6 | 0 | 0 |
4 | 2 | 1 | 5 |
2 | 3 | 0 | 6 |
G:=sub<GL(4,GF(7))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[6,5,1,4,6,5,0,2,1,3,6,1,6,6,0,6],[1,1,4,2,5,6,2,3,0,0,1,0,0,0,5,6] >;
C3×C25⋊C4 in GAP, Magma, Sage, TeX
C_3\times C_{25}\rtimes C_4
% in TeX
G:=Group("C3xC25:C4");
// GroupNames label
G:=SmallGroup(300,5);
// by ID
G=gap.SmallGroup(300,5);
# by ID
G:=PCGroup([5,-2,-3,-2,-5,-5,30,1683,973,118,3004,1014]);
// Polycyclic
G:=Group<a,b,c|a^3=b^25=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^18>;
// generators/relations
Export
Subgroup lattice of C3×C25⋊C4 in TeX
Character table of C3×C25⋊C4 in TeX