Copied to
clipboard

G = C75⋊C4order 300 = 22·3·52

1st semidirect product of C75 and C4 acting faithfully

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C751C4, C25⋊Dic3, D25.S3, C15.1F5, C3⋊(C25⋊C4), C5.(C3⋊F5), (C3×D25).1C2, SmallGroup(300,6)

Series: Derived Chief Lower central Upper central

C1C75 — C75⋊C4
C1C5C25C75C3×D25 — C75⋊C4
C75 — C75⋊C4
C1

Generators and relations for C75⋊C4
 G = < a,b | a75=b4=1, bab-1=a32 >

25C2
75C4
25C6
5D5
25Dic3
15F5
5C3×D5
5C3⋊F5
3C25⋊C4

Character table of C75⋊C4

 class 1234A4B5615A15B25A25B25C25D25E75A75B75C75D75E75F75G75H75I75J
 size 1252757545044444444444444444
ρ1111111111111111111111111    trivial
ρ2111-1-11111111111111111111    linear of order 2
ρ31-11i-i1-111111111111111111    linear of order 4
ρ41-11-ii1-111111111111111111    linear of order 4
ρ522-1002-1-1-122222-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ62-2-10021-1-122222-1-1-1-1-1-1-1-1-1-1    symplectic lifted from Dic3, Schur index 2
ρ7404004044-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ840400-10-1-1ζ2524251825725ζ25192517258256ζ251625132512259ζ25222521254253ζ252325142511252ζ251625132512259ζ251625132512259ζ252325142511252ζ25192517258256ζ2524251825725ζ25222521254253ζ25192517258256ζ25222521254253ζ252325142511252ζ2524251825725    orthogonal lifted from C25⋊C4
ρ940400-10-1-1ζ251625132512259ζ25222521254253ζ25192517258256ζ252325142511252ζ2524251825725ζ25192517258256ζ25192517258256ζ2524251825725ζ25222521254253ζ251625132512259ζ252325142511252ζ25222521254253ζ252325142511252ζ2524251825725ζ251625132512259    orthogonal lifted from C25⋊C4
ρ1040400-10-1-1ζ25222521254253ζ2524251825725ζ252325142511252ζ251625132512259ζ25192517258256ζ252325142511252ζ252325142511252ζ25192517258256ζ2524251825725ζ25222521254253ζ251625132512259ζ2524251825725ζ251625132512259ζ25192517258256ζ25222521254253    orthogonal lifted from C25⋊C4
ρ1140400-10-1-1ζ252325142511252ζ251625132512259ζ2524251825725ζ25192517258256ζ25222521254253ζ2524251825725ζ2524251825725ζ25222521254253ζ251625132512259ζ252325142511252ζ25192517258256ζ251625132512259ζ25192517258256ζ25222521254253ζ252325142511252    orthogonal lifted from C25⋊C4
ρ1240400-10-1-1ζ25192517258256ζ252325142511252ζ25222521254253ζ2524251825725ζ251625132512259ζ25222521254253ζ25222521254253ζ251625132512259ζ252325142511252ζ25192517258256ζ2524251825725ζ252325142511252ζ2524251825725ζ251625132512259ζ25192517258256    orthogonal lifted from C25⋊C4
ρ1340-20040-2-2-1-1-1-1-11--15/21+-15/21+-15/21+-15/21+-15/21+-15/21--15/21--15/21--15/21--15/2    complex lifted from C3⋊F5
ρ1440-20040-2-2-1-1-1-1-11+-15/21--15/21--15/21--15/21--15/21--15/21+-15/21+-15/21+-15/21+-15/2    complex lifted from C3⋊F5
ρ1540-200-101--15/21+-15/2ζ252325142511252ζ251625132512259ζ2524251825725ζ25192517258256ζ2522252125425332ζ252432ζ251832ζ25732ζ25252425ζ32ζ252432ζ251832ζ25732ζ25251825732ζ252232ζ252132ζ25432ζ25325222533ζ25163ζ25133ζ25123ζ2592516259ζ3ζ25233ζ25143ζ25113ζ252251425113ζ25193ζ25173ζ2583ζ2562519256ζ3ζ25163ζ25133ζ25123ζ25925132512ζ3ζ25193ζ25173ζ2583ζ2562517258ζ32ζ252232ζ252132ζ25432ζ25325212543ζ25233ζ25143ζ25113ζ2522523252    complex faithful
ρ1640-200-101--15/21+-15/2ζ2524251825725ζ25192517258256ζ251625132512259ζ25222521254253ζ252325142511252ζ3ζ25163ζ25133ζ25123ζ259251325123ζ25163ζ25133ζ25123ζ2592516259ζ3ζ25233ζ25143ζ25113ζ252251425113ζ25193ζ25173ζ2583ζ2562519256ζ32ζ252432ζ251832ζ25732ζ25251825732ζ252232ζ252132ζ25432ζ2532522253ζ3ζ25193ζ25173ζ2583ζ2562517258ζ32ζ252232ζ252132ζ25432ζ25325212543ζ25233ζ25143ζ25113ζ252252325232ζ252432ζ251832ζ25732ζ25252425    complex faithful
ρ1740-200-101--15/21+-15/2ζ25222521254253ζ2524251825725ζ252325142511252ζ251625132512259ζ251925172582563ζ25233ζ25143ζ25113ζ2522523252ζ3ζ25233ζ25143ζ25113ζ252251425113ζ25193ζ25173ζ2583ζ2562519256ζ32ζ252432ζ251832ζ25732ζ25251825732ζ252232ζ252132ζ25432ζ25325222533ζ25163ζ25133ζ25123ζ259251625932ζ252432ζ251832ζ25732ζ25252425ζ3ζ25163ζ25133ζ25123ζ25925132512ζ3ζ25193ζ25173ζ2583ζ2562517258ζ32ζ252232ζ252132ζ25432ζ2532521254    complex faithful
ρ1840-200-101+-15/21--15/2ζ2524251825725ζ25192517258256ζ251625132512259ζ25222521254253ζ2523251425112523ζ25163ζ25133ζ25123ζ2592516259ζ3ζ25163ζ25133ζ25123ζ259251325123ζ25233ζ25143ζ25113ζ2522523252ζ3ζ25193ζ25173ζ2583ζ256251725832ζ252432ζ251832ζ25732ζ25252425ζ32ζ252232ζ252132ζ25432ζ25325212543ζ25193ζ25173ζ2583ζ256251925632ζ252232ζ252132ζ25432ζ2532522253ζ3ζ25233ζ25143ζ25113ζ25225142511ζ32ζ252432ζ251832ζ25732ζ252518257    complex faithful
ρ1940-200-101+-15/21--15/2ζ25222521254253ζ2524251825725ζ252325142511252ζ251625132512259ζ25192517258256ζ3ζ25233ζ25143ζ25113ζ252251425113ζ25233ζ25143ζ25113ζ2522523252ζ3ζ25193ζ25173ζ2583ζ256251725832ζ252432ζ251832ζ25732ζ25252425ζ32ζ252232ζ252132ζ25432ζ2532521254ζ3ζ25163ζ25133ζ25123ζ25925132512ζ32ζ252432ζ251832ζ25732ζ2525182573ζ25163ζ25133ζ25123ζ25925162593ζ25193ζ25173ζ2583ζ256251925632ζ252232ζ252132ζ25432ζ2532522253    complex faithful
ρ2040-200-101+-15/21--15/2ζ25192517258256ζ252325142511252ζ25222521254253ζ2524251825725ζ25162513251225932ζ252232ζ252132ζ25432ζ2532522253ζ32ζ252232ζ252132ζ25432ζ2532521254ζ3ζ25163ζ25133ζ25123ζ259251325123ζ25233ζ25143ζ25113ζ2522523252ζ3ζ25193ζ25173ζ2583ζ256251725832ζ252432ζ251832ζ25732ζ25252425ζ3ζ25233ζ25143ζ25113ζ25225142511ζ32ζ252432ζ251832ζ25732ζ2525182573ζ25163ζ25133ζ25123ζ25925162593ζ25193ζ25173ζ2583ζ2562519256    complex faithful
ρ2140-200-101+-15/21--15/2ζ252325142511252ζ251625132512259ζ2524251825725ζ25192517258256ζ25222521254253ζ32ζ252432ζ251832ζ25732ζ25251825732ζ252432ζ251832ζ25732ζ25252425ζ32ζ252232ζ252132ζ25432ζ2532521254ζ3ζ25163ζ25133ζ25123ζ259251325123ζ25233ζ25143ζ25113ζ2522523252ζ3ζ25193ζ25173ζ2583ζ25625172583ζ25163ζ25133ζ25123ζ25925162593ζ25193ζ25173ζ2583ζ256251925632ζ252232ζ252132ζ25432ζ2532522253ζ3ζ25233ζ25143ζ25113ζ25225142511    complex faithful
ρ2240-200-101+-15/21--15/2ζ251625132512259ζ25222521254253ζ25192517258256ζ252325142511252ζ25242518257253ζ25193ζ25173ζ2583ζ2562519256ζ3ζ25193ζ25173ζ2583ζ256251725832ζ252432ζ251832ζ25732ζ25252425ζ32ζ252232ζ252132ζ25432ζ2532521254ζ3ζ25163ζ25133ζ25123ζ259251325123ζ25233ζ25143ζ25113ζ252252325232ζ252232ζ252132ζ25432ζ2532522253ζ3ζ25233ζ25143ζ25113ζ25225142511ζ32ζ252432ζ251832ζ25732ζ2525182573ζ25163ζ25133ζ25123ζ2592516259    complex faithful
ρ2340-200-101--15/21+-15/2ζ251625132512259ζ25222521254253ζ25192517258256ζ252325142511252ζ2524251825725ζ3ζ25193ζ25173ζ2583ζ25625172583ζ25193ζ25173ζ2583ζ2562519256ζ32ζ252432ζ251832ζ25732ζ25251825732ζ252232ζ252132ζ25432ζ25325222533ζ25163ζ25133ζ25123ζ2592516259ζ3ζ25233ζ25143ζ25113ζ25225142511ζ32ζ252232ζ252132ζ25432ζ25325212543ζ25233ζ25143ζ25113ζ252252325232ζ252432ζ251832ζ25732ζ25252425ζ3ζ25163ζ25133ζ25123ζ25925132512    complex faithful
ρ2440-200-101--15/21+-15/2ζ25192517258256ζ252325142511252ζ25222521254253ζ2524251825725ζ251625132512259ζ32ζ252232ζ252132ζ25432ζ253252125432ζ252232ζ252132ζ25432ζ25325222533ζ25163ζ25133ζ25123ζ2592516259ζ3ζ25233ζ25143ζ25113ζ252251425113ζ25193ζ25173ζ2583ζ2562519256ζ32ζ252432ζ251832ζ25732ζ2525182573ζ25233ζ25143ζ25113ζ252252325232ζ252432ζ251832ζ25732ζ25252425ζ3ζ25163ζ25133ζ25123ζ25925132512ζ3ζ25193ζ25173ζ2583ζ2562517258    complex faithful

Smallest permutation representation of C75⋊C4
On 75 points
Generators in S75
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)
(2 69 50 33)(3 62 24 65)(4 55 73 22)(5 48 47 54)(6 41 21 11)(7 34 70 43)(8 27 44 75)(9 20 18 32)(10 13 67 64)(12 74 15 53)(14 60 38 42)(16 46 61 31)(17 39 35 63)(19 25 58 52)(23 72 29 30)(26 51)(28 37 49 40)(36 56 66 71)(45 68 57 59)

G:=sub<Sym(75)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75), (2,69,50,33)(3,62,24,65)(4,55,73,22)(5,48,47,54)(6,41,21,11)(7,34,70,43)(8,27,44,75)(9,20,18,32)(10,13,67,64)(12,74,15,53)(14,60,38,42)(16,46,61,31)(17,39,35,63)(19,25,58,52)(23,72,29,30)(26,51)(28,37,49,40)(36,56,66,71)(45,68,57,59)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75), (2,69,50,33)(3,62,24,65)(4,55,73,22)(5,48,47,54)(6,41,21,11)(7,34,70,43)(8,27,44,75)(9,20,18,32)(10,13,67,64)(12,74,15,53)(14,60,38,42)(16,46,61,31)(17,39,35,63)(19,25,58,52)(23,72,29,30)(26,51)(28,37,49,40)(36,56,66,71)(45,68,57,59) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)], [(2,69,50,33),(3,62,24,65),(4,55,73,22),(5,48,47,54),(6,41,21,11),(7,34,70,43),(8,27,44,75),(9,20,18,32),(10,13,67,64),(12,74,15,53),(14,60,38,42),(16,46,61,31),(17,39,35,63),(19,25,58,52),(23,72,29,30),(26,51),(28,37,49,40),(36,56,66,71),(45,68,57,59)]])

Matrix representation of C75⋊C4 in GL4(𝔽601) generated by

25151520308
359165535328
66273185242
86581293493
,
0100
0001
1000
0010
G:=sub<GL(4,GF(601))| [251,359,66,86,515,165,273,581,20,535,185,293,308,328,242,493],[0,0,1,0,1,0,0,0,0,0,0,1,0,1,0,0] >;

C75⋊C4 in GAP, Magma, Sage, TeX

C_{75}\rtimes C_4
% in TeX

G:=Group("C75:C4");
// GroupNames label

G:=SmallGroup(300,6);
// by ID

G=gap.SmallGroup(300,6);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-5,10,122,1923,2288,218,4504,3009]);
// Polycyclic

G:=Group<a,b|a^75=b^4=1,b*a*b^-1=a^32>;
// generators/relations

Export

Subgroup lattice of C75⋊C4 in TeX
Character table of C75⋊C4 in TeX

׿
×
𝔽