Copied to
clipboard

G = D15⋊D5order 300 = 22·3·52

The semidirect product of D15 and D5 acting via D5/C5=C2

metabelian, supersoluble, monomial, A-group

Aliases: D15⋊D5, C524D6, C152D10, C32D52, C5⋊D52S3, C53(S3×D5), (C5×D15)⋊3C2, (C5×C15)⋊4C22, (C3×C5⋊D5)⋊2C2, SmallGroup(300,40)

Series: Derived Chief Lower central Upper central

C1C5×C15 — D15⋊D5
C1C5C52C5×C15C5×D15 — D15⋊D5
C5×C15 — D15⋊D5
C1

Generators and relations for D15⋊D5
 G = < a,b,c,d | a15=b2=c5=d2=1, bab=a-1, ac=ca, dad=a4, bc=cb, dbd=a3b, dcd=c-1 >

15C2
15C2
25C2
2C5
2C5
75C22
5S3
5S3
25C6
3D5
3D5
5D5
5D5
10D5
10D5
15C10
15C10
2C15
2C15
25D6
15D10
15D10
5C5×S3
5C3×D5
5C3×D5
5C5×S3
10C3×D5
10C3×D5
3C5×D5
3C5×D5
5S3×D5
5S3×D5
3D52

Character table of D15⋊D5

 class 12A2B2C35A5B5C5D5E5F5G5H610A10B10C10D15A15B15C15D15E15F15G15H15I15J15K15L
 size 11515252222244445030303030444444444444
ρ1111111111111111111111111111111    trivial
ρ211-1-1111111111-11-11-1111111111111    linear of order 2
ρ31-11-1111111111-1-11-11111111111111    linear of order 2
ρ41-1-111111111111-1-1-1-1111111111111    linear of order 2
ρ52002-122222222-10000-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ6200-2-12222222210000-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from D6
ρ720-20222-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/2001-5/201+5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/22-1+5/2-1-5/2-1-5/2-1+5/22    orthogonal lifted from D10
ρ82-2002-1-5/2-1+5/222-1-5/2-1-5/2-1+5/2-1+5/201-5/201+5/20-1+5/2-1+5/2-1+5/2-1+5/222-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D10
ρ92-2002-1+5/2-1-5/222-1+5/2-1+5/2-1-5/2-1-5/201+5/201-5/20-1-5/2-1-5/2-1-5/2-1-5/222-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D10
ρ1022002-1+5/2-1-5/222-1+5/2-1+5/2-1-5/2-1-5/20-1-5/20-1+5/20-1-5/2-1-5/2-1-5/2-1-5/222-1+5/2-1+5/2-1+5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ112020222-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/200-1+5/20-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/22-1+5/2-1-5/2-1-5/2-1+5/22    orthogonal lifted from D5
ρ1220-20222-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/2001+5/201-5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/22-1-5/2-1+5/2-1+5/2-1-5/22    orthogonal lifted from D10
ρ132020222-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/200-1-5/20-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/22-1-5/2-1+5/2-1+5/2-1-5/22    orthogonal lifted from D5
ρ1422002-1-5/2-1+5/222-1-5/2-1-5/2-1+5/2-1+5/20-1+5/20-1-5/20-1+5/2-1+5/2-1+5/2-1+5/222-1-5/2-1-5/2-1-5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ154000-2-1+5-1-544-1+5-1+5-1-5-1-5000001+5/21+5/21+5/21+5/2-2-21-5/21-5/21-5/21-5/21-5/21+5/2    orthogonal lifted from S3×D5
ρ1640004-1+5-1-5-1+5-1-5-13-5/2-13+5/200000-13+5/23+5/2-1-1+5-1-5-1+53-5/2-1-13-5/2-1-5    orthogonal lifted from D52
ρ174000-244-1+5-1-5-1-5-1+5-1+5-1-5000001-5/21+5/21+5/21-5/21-5/21+5/2-21-5/21+5/21+5/21-5/2-2    orthogonal lifted from S3×D5
ρ1840004-1+5-1-5-1-5-1+53-5/2-13+5/2-1000003+5/2-1-13+5/2-1-5-1+5-1+5-13-5/23-5/2-1-1-5    orthogonal lifted from D52
ρ194000-244-1-5-1+5-1+5-1-5-1-5-1+5000001+5/21-5/21-5/21+5/21+5/21-5/2-21+5/21-5/21-5/21+5/2-2    orthogonal lifted from S3×D5
ρ2040004-1-5-1+5-1+5-1-53+5/2-13-5/2-1000003-5/2-1-13-5/2-1+5-1-5-1-5-13+5/23+5/2-1-1+5    orthogonal lifted from D52
ρ2140004-1-5-1+5-1-5-1+5-13+5/2-13-5/200000-13-5/23-5/2-1-1-5-1+5-1-53+5/2-1-13+5/2-1+5    orthogonal lifted from D52
ρ224000-2-1-5-1+544-1-5-1-5-1+5-1+5000001-5/21-5/21-5/21-5/2-2-21+5/21+5/21+5/21+5/21+5/21-5/2    orthogonal lifted from S3×D5
ρ234000-2-1+5-1-5-1-5-1+53-5/2-13+5/2-100000ζ3ζ543ζ5-2ζ3-21+-15/21--15/2ζ32ζ5432ζ5-2ζ32-21+5/21-5/21-5/21--15/2ζ32ζ5332ζ52-2ζ32-2ζ3ζ533ζ52-2ζ3-21+-15/21+5/2    complex faithful
ρ244000-2-1+5-1-5-1+5-1-5-13-5/2-13+5/2000001+-15/2ζ32ζ5432ζ5-2ζ32-2ζ3ζ543ζ5-2ζ3-21--15/21-5/21+5/21-5/2ζ32ζ5332ζ52-2ζ32-21+-15/21--15/2ζ3ζ533ζ52-2ζ3-21+5/2    complex faithful
ρ254000-2-1-5-1+5-1-5-1+5-13+5/2-13-5/2000001--15/2ζ32ζ5332ζ52-2ζ32-2ζ3ζ533ζ52-2ζ3-21+-15/21+5/21-5/21+5/2ζ32ζ5432ζ5-2ζ32-21--15/21+-15/2ζ3ζ543ζ5-2ζ3-21-5/2    complex faithful
ρ264000-2-1-5-1+5-1+5-1-53+5/2-13-5/2-100000ζ32ζ5332ζ52-2ζ32-21+-15/21--15/2ζ3ζ533ζ52-2ζ3-21-5/21+5/21+5/21--15/2ζ3ζ543ζ5-2ζ3-2ζ32ζ5432ζ5-2ζ32-21+-15/21-5/2    complex faithful
ρ274000-2-1-5-1+5-1-5-1+5-13+5/2-13-5/2000001+-15/2ζ3ζ533ζ52-2ζ3-2ζ32ζ5332ζ52-2ζ32-21--15/21+5/21-5/21+5/2ζ3ζ543ζ5-2ζ3-21+-15/21--15/2ζ32ζ5432ζ5-2ζ32-21-5/2    complex faithful
ρ284000-2-1-5-1+5-1+5-1-53+5/2-13-5/2-100000ζ3ζ533ζ52-2ζ3-21--15/21+-15/2ζ32ζ5332ζ52-2ζ32-21-5/21+5/21+5/21+-15/2ζ32ζ5432ζ5-2ζ32-2ζ3ζ543ζ5-2ζ3-21--15/21-5/2    complex faithful
ρ294000-2-1+5-1-5-1+5-1-5-13-5/2-13+5/2000001--15/2ζ3ζ543ζ5-2ζ3-2ζ32ζ5432ζ5-2ζ32-21+-15/21-5/21+5/21-5/2ζ3ζ533ζ52-2ζ3-21--15/21+-15/2ζ32ζ5332ζ52-2ζ32-21+5/2    complex faithful
ρ304000-2-1+5-1-5-1-5-1+53-5/2-13+5/2-100000ζ32ζ5432ζ5-2ζ32-21--15/21+-15/2ζ3ζ543ζ5-2ζ3-21+5/21-5/21-5/21+-15/2ζ3ζ533ζ52-2ζ3-2ζ32ζ5332ζ52-2ζ32-21--15/21+5/2    complex faithful

Permutation representations of D15⋊D5
On 30 points - transitive group 30T79
Generators in S30
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 18)(9 17)(10 16)(11 30)(12 29)(13 28)(14 27)(15 26)
(1 7 13 4 10)(2 8 14 5 11)(3 9 15 6 12)(16 25 19 28 22)(17 26 20 29 23)(18 27 21 30 24)
(1 10)(2 14)(4 7)(5 11)(6 15)(9 12)(16 22)(17 26)(18 30)(20 23)(21 27)(25 28)

G:=sub<Sym(30)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,30)(12,29)(13,28)(14,27)(15,26), (1,7,13,4,10)(2,8,14,5,11)(3,9,15,6,12)(16,25,19,28,22)(17,26,20,29,23)(18,27,21,30,24), (1,10)(2,14)(4,7)(5,11)(6,15)(9,12)(16,22)(17,26)(18,30)(20,23)(21,27)(25,28)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,18)(9,17)(10,16)(11,30)(12,29)(13,28)(14,27)(15,26), (1,7,13,4,10)(2,8,14,5,11)(3,9,15,6,12)(16,25,19,28,22)(17,26,20,29,23)(18,27,21,30,24), (1,10)(2,14)(4,7)(5,11)(6,15)(9,12)(16,22)(17,26)(18,30)(20,23)(21,27)(25,28) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,18),(9,17),(10,16),(11,30),(12,29),(13,28),(14,27),(15,26)], [(1,7,13,4,10),(2,8,14,5,11),(3,9,15,6,12),(16,25,19,28,22),(17,26,20,29,23),(18,27,21,30,24)], [(1,10),(2,14),(4,7),(5,11),(6,15),(9,12),(16,22),(17,26),(18,30),(20,23),(21,27),(25,28)]])

G:=TransitiveGroup(30,79);

Matrix representation of D15⋊D5 in GL6(𝔽31)

3010000
3000000
00301300
00181300
000010
000001
,
1740000
21140000
00131800
0011800
0000300
0000030
,
100000
010000
001000
000100
0000030
0000112
,
100000
010000
000100
001000
0000112
0000030

G:=sub<GL(6,GF(31))| [30,30,0,0,0,0,1,0,0,0,0,0,0,0,30,18,0,0,0,0,13,13,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[17,21,0,0,0,0,4,14,0,0,0,0,0,0,13,1,0,0,0,0,18,18,0,0,0,0,0,0,30,0,0,0,0,0,0,30],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,30,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,12,30] >;

D15⋊D5 in GAP, Magma, Sage, TeX

D_{15}\rtimes D_5
% in TeX

G:=Group("D15:D5");
// GroupNames label

G:=SmallGroup(300,40);
// by ID

G=gap.SmallGroup(300,40);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-5,122,963,488,3009]);
// Polycyclic

G:=Group<a,b,c,d|a^15=b^2=c^5=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^4,b*c=c*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D15⋊D5 in TeX
Character table of D15⋊D5 in TeX

׿
×
𝔽