direct product, metabelian, supersoluble, monomial, A-group
Aliases: D5×D15, C5⋊1D30, C52⋊3D6, C15⋊3D10, C3⋊1D52, (C5×D5)⋊S3, (C3×D5)⋊D5, C5⋊2(S3×D5), C5⋊D15⋊2C2, (C5×D15)⋊2C2, (D5×C15)⋊1C2, (C5×C15)⋊3C22, SmallGroup(300,39)
Series: Derived ►Chief ►Lower central ►Upper central
C5×C15 — D5×D15 |
Generators and relations for D5×D15
G = < a,b,c,d | a5=b2=c15=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
(1 13 10 7 4)(2 14 11 8 5)(3 15 12 9 6)(16 19 22 25 28)(17 20 23 26 29)(18 21 24 27 30)
(1 28)(2 29)(3 30)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 20)(12 19)(13 18)(14 17)(15 16)
G:=sub<Sym(30)| (1,13,10,7,4)(2,14,11,8,5)(3,15,12,9,6)(16,19,22,25,28)(17,20,23,26,29)(18,21,24,27,30), (1,28)(2,29)(3,30)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)>;
G:=Group( (1,13,10,7,4)(2,14,11,8,5)(3,15,12,9,6)(16,19,22,25,28)(17,20,23,26,29)(18,21,24,27,30), (1,28)(2,29)(3,30)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16) );
G=PermutationGroup([[(1,13,10,7,4),(2,14,11,8,5),(3,15,12,9,6),(16,19,22,25,28),(17,20,23,26,29),(18,21,24,27,30)], [(1,28),(2,29),(3,30),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,20),(12,19),(13,18),(14,17),(15,16)]])
G:=TransitiveGroup(30,67);
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 6 | 10A | 10B | 10C | 10D | 15A | 15B | 15C | 15D | 15E | ··· | 15N | 30A | 30B | 30C | 30D |
order | 1 | 2 | 2 | 2 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 6 | 10 | 10 | 10 | 10 | 15 | 15 | 15 | 15 | 15 | ··· | 15 | 30 | 30 | 30 | 30 |
size | 1 | 5 | 15 | 75 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | 10 | 10 | 30 | 30 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 10 | 10 | 10 | 10 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | S3 | D5 | D5 | D6 | D10 | D15 | D30 | S3×D5 | D52 | D5×D15 |
kernel | D5×D15 | D5×C15 | C5×D15 | C5⋊D15 | C5×D5 | C3×D5 | D15 | C52 | C15 | D5 | C5 | C5 | C3 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 4 | 4 | 4 | 2 | 4 | 8 |
Matrix representation of D5×D15 ►in GL4(𝔽31) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 18 | 30 |
0 | 0 | 1 | 0 |
30 | 0 | 0 | 0 |
0 | 30 | 0 | 0 |
0 | 0 | 18 | 30 |
0 | 0 | 13 | 13 |
26 | 7 | 0 | 0 |
3 | 8 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 15 | 0 | 0 |
29 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(31))| [1,0,0,0,0,1,0,0,0,0,18,1,0,0,30,0],[30,0,0,0,0,30,0,0,0,0,18,13,0,0,30,13],[26,3,0,0,7,8,0,0,0,0,1,0,0,0,0,1],[0,29,0,0,15,0,0,0,0,0,1,0,0,0,0,1] >;
D5×D15 in GAP, Magma, Sage, TeX
D_5\times D_{15}
% in TeX
G:=Group("D5xD15");
// GroupNames label
G:=SmallGroup(300,39);
// by ID
G=gap.SmallGroup(300,39);
# by ID
G:=PCGroup([5,-2,-2,-3,-5,-5,122,488,6004]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^2=c^15=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export