Copied to
clipboard

G = D5×D15order 300 = 22·3·52

Direct product of D5 and D15

direct product, metabelian, supersoluble, monomial, A-group

Aliases: D5×D15, C51D30, C523D6, C153D10, C31D52, (C5×D5)⋊S3, (C3×D5)⋊D5, C52(S3×D5), C5⋊D152C2, (C5×D15)⋊2C2, (D5×C15)⋊1C2, (C5×C15)⋊3C22, SmallGroup(300,39)

Series: Derived Chief Lower central Upper central

C1C5×C15 — D5×D15
C1C5C52C5×C15C5×D15 — D5×D15
C5×C15 — D5×D15
C1

Generators and relations for D5×D15
 G = < a,b,c,d | a5=b2=c15=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

5C2
15C2
75C2
2C5
2C5
75C22
5C6
5S3
25S3
3D5
5C10
15C10
15D5
15D5
30D5
30D5
2C15
2C15
25D6
15D10
15D10
5C30
5D15
5D15
5C5×S3
10D15
10D15
3C5⋊D5
3C5×D5
5S3×D5
5D30
3D52

Permutation representations of D5×D15
On 30 points - transitive group 30T67
Generators in S30
(1 13 10 7 4)(2 14 11 8 5)(3 15 12 9 6)(16 19 22 25 28)(17 20 23 26 29)(18 21 24 27 30)
(1 28)(2 29)(3 30)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 20)(12 19)(13 18)(14 17)(15 16)

G:=sub<Sym(30)| (1,13,10,7,4)(2,14,11,8,5)(3,15,12,9,6)(16,19,22,25,28)(17,20,23,26,29)(18,21,24,27,30), (1,28)(2,29)(3,30)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)>;

G:=Group( (1,13,10,7,4)(2,14,11,8,5)(3,15,12,9,6)(16,19,22,25,28)(17,20,23,26,29)(18,21,24,27,30), (1,28)(2,29)(3,30)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16) );

G=PermutationGroup([[(1,13,10,7,4),(2,14,11,8,5),(3,15,12,9,6),(16,19,22,25,28),(17,20,23,26,29),(18,21,24,27,30)], [(1,28),(2,29),(3,30),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,20),(12,19),(13,18),(14,17),(15,16)]])

G:=TransitiveGroup(30,67);

36 conjugacy classes

class 1 2A2B2C 3 5A5B5C5D5E5F5G5H 6 10A10B10C10D15A15B15C15D15E···15N30A30B30C30D
order12223555555556101010101515151515···1530303030
size151575222224444101010303022224···410101010

36 irreducible representations

dim11112222222444
type++++++++++++++
imageC1C2C2C2S3D5D5D6D10D15D30S3×D5D52D5×D15
kernelD5×D15D5×C15C5×D15C5⋊D15C5×D5C3×D5D15C52C15D5C5C5C3C1
# reps11111221444248

Matrix representation of D5×D15 in GL4(𝔽31) generated by

1000
0100
001830
0010
,
30000
03000
001830
001313
,
26700
3800
0010
0001
,
01500
29000
0010
0001
G:=sub<GL(4,GF(31))| [1,0,0,0,0,1,0,0,0,0,18,1,0,0,30,0],[30,0,0,0,0,30,0,0,0,0,18,13,0,0,30,13],[26,3,0,0,7,8,0,0,0,0,1,0,0,0,0,1],[0,29,0,0,15,0,0,0,0,0,1,0,0,0,0,1] >;

D5×D15 in GAP, Magma, Sage, TeX

D_5\times D_{15}
% in TeX

G:=Group("D5xD15");
// GroupNames label

G:=SmallGroup(300,39);
// by ID

G=gap.SmallGroup(300,39);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-5,122,488,6004]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^15=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D5×D15 in TeX

׿
×
𝔽