extension | φ:Q→Aut N | d | ρ | Label | ID |
C26.1D6 = Dic3×D13 | φ: D6/S3 → C2 ⊆ Aut C26 | 156 | 4- | C26.1D6 | 312,15 |
C26.2D6 = S3×Dic13 | φ: D6/S3 → C2 ⊆ Aut C26 | 156 | 4- | C26.2D6 | 312,16 |
C26.3D6 = D78.C2 | φ: D6/S3 → C2 ⊆ Aut C26 | 156 | 4+ | C26.3D6 | 312,17 |
C26.4D6 = C39⋊D4 | φ: D6/S3 → C2 ⊆ Aut C26 | 156 | 4- | C26.4D6 | 312,18 |
C26.5D6 = C3⋊D52 | φ: D6/S3 → C2 ⊆ Aut C26 | 156 | 4+ | C26.5D6 | 312,19 |
C26.6D6 = C13⋊D12 | φ: D6/S3 → C2 ⊆ Aut C26 | 156 | 4+ | C26.6D6 | 312,20 |
C26.7D6 = C39⋊Q8 | φ: D6/S3 → C2 ⊆ Aut C26 | 312 | 4- | C26.7D6 | 312,21 |
C26.8D6 = Dic78 | φ: D6/C6 → C2 ⊆ Aut C26 | 312 | 2- | C26.8D6 | 312,37 |
C26.9D6 = C4×D39 | φ: D6/C6 → C2 ⊆ Aut C26 | 156 | 2 | C26.9D6 | 312,38 |
C26.10D6 = D156 | φ: D6/C6 → C2 ⊆ Aut C26 | 156 | 2+ | C26.10D6 | 312,39 |
C26.11D6 = C2×Dic39 | φ: D6/C6 → C2 ⊆ Aut C26 | 312 | | C26.11D6 | 312,40 |
C26.12D6 = C39⋊7D4 | φ: D6/C6 → C2 ⊆ Aut C26 | 156 | 2 | C26.12D6 | 312,41 |
C26.13D6 = C13×Dic6 | central extension (φ=1) | 312 | 2 | C26.13D6 | 312,32 |
C26.14D6 = S3×C52 | central extension (φ=1) | 156 | 2 | C26.14D6 | 312,33 |
C26.15D6 = C13×D12 | central extension (φ=1) | 156 | 2 | C26.15D6 | 312,34 |
C26.16D6 = Dic3×C26 | central extension (φ=1) | 312 | | C26.16D6 | 312,35 |
C26.17D6 = C13×C3⋊D4 | central extension (φ=1) | 156 | 2 | C26.17D6 | 312,36 |