Extensions 1→N→G→Q→1 with N=C26 and Q=D6

Direct product G=N×Q with N=C26 and Q=D6
dρLabelID
S3×C2×C26156S3xC2xC26312,59

Semidirect products G=N:Q with N=C26 and Q=D6
extensionφ:Q→Aut NdρLabelID
C261D6 = C2×S3×D13φ: D6/S3C2 ⊆ Aut C26784+C26:1D6312,54
C262D6 = C22×D39φ: D6/C6C2 ⊆ Aut C26156C26:2D6312,60

Non-split extensions G=N.Q with N=C26 and Q=D6
extensionφ:Q→Aut NdρLabelID
C26.1D6 = Dic3×D13φ: D6/S3C2 ⊆ Aut C261564-C26.1D6312,15
C26.2D6 = S3×Dic13φ: D6/S3C2 ⊆ Aut C261564-C26.2D6312,16
C26.3D6 = D78.C2φ: D6/S3C2 ⊆ Aut C261564+C26.3D6312,17
C26.4D6 = C39⋊D4φ: D6/S3C2 ⊆ Aut C261564-C26.4D6312,18
C26.5D6 = C3⋊D52φ: D6/S3C2 ⊆ Aut C261564+C26.5D6312,19
C26.6D6 = C13⋊D12φ: D6/S3C2 ⊆ Aut C261564+C26.6D6312,20
C26.7D6 = C39⋊Q8φ: D6/S3C2 ⊆ Aut C263124-C26.7D6312,21
C26.8D6 = Dic78φ: D6/C6C2 ⊆ Aut C263122-C26.8D6312,37
C26.9D6 = C4×D39φ: D6/C6C2 ⊆ Aut C261562C26.9D6312,38
C26.10D6 = D156φ: D6/C6C2 ⊆ Aut C261562+C26.10D6312,39
C26.11D6 = C2×Dic39φ: D6/C6C2 ⊆ Aut C26312C26.11D6312,40
C26.12D6 = C397D4φ: D6/C6C2 ⊆ Aut C261562C26.12D6312,41
C26.13D6 = C13×Dic6central extension (φ=1)3122C26.13D6312,32
C26.14D6 = S3×C52central extension (φ=1)1562C26.14D6312,33
C26.15D6 = C13×D12central extension (φ=1)1562C26.15D6312,34
C26.16D6 = Dic3×C26central extension (φ=1)312C26.16D6312,35
C26.17D6 = C13×C3⋊D4central extension (φ=1)1562C26.17D6312,36

׿
×
𝔽