Copied to
clipboard

G = C3⋊D52order 312 = 23·3·13

The semidirect product of C3 and D52 acting via D52/D26=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C392D4, C32D52, D783C2, D262S3, Dic3⋊D13, C6.5D26, C26.5D6, C78.5C22, (C6×D13)⋊2C2, C131(C3⋊D4), C2.5(S3×D13), (Dic3×C13)⋊3C2, SmallGroup(312,19)

Series: Derived Chief Lower central Upper central

C1C78 — C3⋊D52
C1C13C39C78C6×D13 — C3⋊D52
C39C78 — C3⋊D52
C1C2

Generators and relations for C3⋊D52
 G = < a,b,c | a3=b52=c2=1, bab-1=cac=a-1, cbc=b-1 >

26C2
78C2
3C4
13C22
39C22
26C6
26S3
2D13
6D13
39D4
13D6
13C2×C6
3C52
3D26
2C3×D13
2D39
13C3⋊D4
3D52

Smallest permutation representation of C3⋊D52
On 156 points
Generators in S156
(1 146 103)(2 104 147)(3 148 53)(4 54 149)(5 150 55)(6 56 151)(7 152 57)(8 58 153)(9 154 59)(10 60 155)(11 156 61)(12 62 105)(13 106 63)(14 64 107)(15 108 65)(16 66 109)(17 110 67)(18 68 111)(19 112 69)(20 70 113)(21 114 71)(22 72 115)(23 116 73)(24 74 117)(25 118 75)(26 76 119)(27 120 77)(28 78 121)(29 122 79)(30 80 123)(31 124 81)(32 82 125)(33 126 83)(34 84 127)(35 128 85)(36 86 129)(37 130 87)(38 88 131)(39 132 89)(40 90 133)(41 134 91)(42 92 135)(43 136 93)(44 94 137)(45 138 95)(46 96 139)(47 140 97)(48 98 141)(49 142 99)(50 100 143)(51 144 101)(52 102 145)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)
(1 39)(2 38)(3 37)(4 36)(5 35)(6 34)(7 33)(8 32)(9 31)(10 30)(11 29)(12 28)(13 27)(14 26)(15 25)(16 24)(17 23)(18 22)(19 21)(40 52)(41 51)(42 50)(43 49)(44 48)(45 47)(53 130)(54 129)(55 128)(56 127)(57 126)(58 125)(59 124)(60 123)(61 122)(62 121)(63 120)(64 119)(65 118)(66 117)(67 116)(68 115)(69 114)(70 113)(71 112)(72 111)(73 110)(74 109)(75 108)(76 107)(77 106)(78 105)(79 156)(80 155)(81 154)(82 153)(83 152)(84 151)(85 150)(86 149)(87 148)(88 147)(89 146)(90 145)(91 144)(92 143)(93 142)(94 141)(95 140)(96 139)(97 138)(98 137)(99 136)(100 135)(101 134)(102 133)(103 132)(104 131)

G:=sub<Sym(156)| (1,146,103)(2,104,147)(3,148,53)(4,54,149)(5,150,55)(6,56,151)(7,152,57)(8,58,153)(9,154,59)(10,60,155)(11,156,61)(12,62,105)(13,106,63)(14,64,107)(15,108,65)(16,66,109)(17,110,67)(18,68,111)(19,112,69)(20,70,113)(21,114,71)(22,72,115)(23,116,73)(24,74,117)(25,118,75)(26,76,119)(27,120,77)(28,78,121)(29,122,79)(30,80,123)(31,124,81)(32,82,125)(33,126,83)(34,84,127)(35,128,85)(36,86,129)(37,130,87)(38,88,131)(39,132,89)(40,90,133)(41,134,91)(42,92,135)(43,136,93)(44,94,137)(45,138,95)(46,96,139)(47,140,97)(48,98,141)(49,142,99)(50,100,143)(51,144,101)(52,102,145), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)(53,130)(54,129)(55,128)(56,127)(57,126)(58,125)(59,124)(60,123)(61,122)(62,121)(63,120)(64,119)(65,118)(66,117)(67,116)(68,115)(69,114)(70,113)(71,112)(72,111)(73,110)(74,109)(75,108)(76,107)(77,106)(78,105)(79,156)(80,155)(81,154)(82,153)(83,152)(84,151)(85,150)(86,149)(87,148)(88,147)(89,146)(90,145)(91,144)(92,143)(93,142)(94,141)(95,140)(96,139)(97,138)(98,137)(99,136)(100,135)(101,134)(102,133)(103,132)(104,131)>;

G:=Group( (1,146,103)(2,104,147)(3,148,53)(4,54,149)(5,150,55)(6,56,151)(7,152,57)(8,58,153)(9,154,59)(10,60,155)(11,156,61)(12,62,105)(13,106,63)(14,64,107)(15,108,65)(16,66,109)(17,110,67)(18,68,111)(19,112,69)(20,70,113)(21,114,71)(22,72,115)(23,116,73)(24,74,117)(25,118,75)(26,76,119)(27,120,77)(28,78,121)(29,122,79)(30,80,123)(31,124,81)(32,82,125)(33,126,83)(34,84,127)(35,128,85)(36,86,129)(37,130,87)(38,88,131)(39,132,89)(40,90,133)(41,134,91)(42,92,135)(43,136,93)(44,94,137)(45,138,95)(46,96,139)(47,140,97)(48,98,141)(49,142,99)(50,100,143)(51,144,101)(52,102,145), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156), (1,39)(2,38)(3,37)(4,36)(5,35)(6,34)(7,33)(8,32)(9,31)(10,30)(11,29)(12,28)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)(53,130)(54,129)(55,128)(56,127)(57,126)(58,125)(59,124)(60,123)(61,122)(62,121)(63,120)(64,119)(65,118)(66,117)(67,116)(68,115)(69,114)(70,113)(71,112)(72,111)(73,110)(74,109)(75,108)(76,107)(77,106)(78,105)(79,156)(80,155)(81,154)(82,153)(83,152)(84,151)(85,150)(86,149)(87,148)(88,147)(89,146)(90,145)(91,144)(92,143)(93,142)(94,141)(95,140)(96,139)(97,138)(98,137)(99,136)(100,135)(101,134)(102,133)(103,132)(104,131) );

G=PermutationGroup([[(1,146,103),(2,104,147),(3,148,53),(4,54,149),(5,150,55),(6,56,151),(7,152,57),(8,58,153),(9,154,59),(10,60,155),(11,156,61),(12,62,105),(13,106,63),(14,64,107),(15,108,65),(16,66,109),(17,110,67),(18,68,111),(19,112,69),(20,70,113),(21,114,71),(22,72,115),(23,116,73),(24,74,117),(25,118,75),(26,76,119),(27,120,77),(28,78,121),(29,122,79),(30,80,123),(31,124,81),(32,82,125),(33,126,83),(34,84,127),(35,128,85),(36,86,129),(37,130,87),(38,88,131),(39,132,89),(40,90,133),(41,134,91),(42,92,135),(43,136,93),(44,94,137),(45,138,95),(46,96,139),(47,140,97),(48,98,141),(49,142,99),(50,100,143),(51,144,101),(52,102,145)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)], [(1,39),(2,38),(3,37),(4,36),(5,35),(6,34),(7,33),(8,32),(9,31),(10,30),(11,29),(12,28),(13,27),(14,26),(15,25),(16,24),(17,23),(18,22),(19,21),(40,52),(41,51),(42,50),(43,49),(44,48),(45,47),(53,130),(54,129),(55,128),(56,127),(57,126),(58,125),(59,124),(60,123),(61,122),(62,121),(63,120),(64,119),(65,118),(66,117),(67,116),(68,115),(69,114),(70,113),(71,112),(72,111),(73,110),(74,109),(75,108),(76,107),(77,106),(78,105),(79,156),(80,155),(81,154),(82,153),(83,152),(84,151),(85,150),(86,149),(87,148),(88,147),(89,146),(90,145),(91,144),(92,143),(93,142),(94,141),(95,140),(96,139),(97,138),(98,137),(99,136),(100,135),(101,134),(102,133),(103,132),(104,131)]])

45 conjugacy classes

class 1 2A2B2C 3  4 6A6B6C13A···13F26A···26F39A···39F52A···52L78A···78F
order12223466613···1326···2639···3952···5278···78
size11267826226262···22···24···46···64···4

45 irreducible representations

dim1111222222244
type++++++++++++
imageC1C2C2C2S3D4D6C3⋊D4D13D26D52S3×D13C3⋊D52
kernelC3⋊D52Dic3×C13C6×D13D78D26C39C26C13Dic3C6C3C2C1
# reps11111112661266

Matrix representation of C3⋊D52 in GL4(𝔽157) generated by

1000
0100
0015519
00991
,
743700
12014700
002551
0077132
,
1429000
11500
001138
000156
G:=sub<GL(4,GF(157))| [1,0,0,0,0,1,0,0,0,0,155,99,0,0,19,1],[74,120,0,0,37,147,0,0,0,0,25,77,0,0,51,132],[142,1,0,0,90,15,0,0,0,0,1,0,0,0,138,156] >;

C3⋊D52 in GAP, Magma, Sage, TeX

C_3\rtimes D_{52}
% in TeX

G:=Group("C3:D52");
// GroupNames label

G:=SmallGroup(312,19);
// by ID

G=gap.SmallGroup(312,19);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-13,61,26,168,7204]);
// Polycyclic

G:=Group<a,b,c|a^3=b^52=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3⋊D52 in TeX

׿
×
𝔽