Extensions 1→N→G→Q→1 with N=C26 and Q=C2×C6

Direct product G=N×Q with N=C26 and Q=C2×C6
dρLabelID
C22×C78312C2^2xC78312,61

Semidirect products G=N:Q with N=C26 and Q=C2×C6
extensionφ:Q→Aut NdρLabelID
C26⋊(C2×C6) = C22×C13⋊C6φ: C2×C6/C2C6 ⊆ Aut C2652C26:(C2xC6)312,49
C262(C2×C6) = C23×C13⋊C3φ: C2×C6/C22C3 ⊆ Aut C26104C26:2(C2xC6)312,55
C263(C2×C6) = C2×C6×D13φ: C2×C6/C6C2 ⊆ Aut C26156C26:3(C2xC6)312,58

Non-split extensions G=N.Q with N=C26 and Q=C2×C6
extensionφ:Q→Aut NdρLabelID
C26.1(C2×C6) = Dic26⋊C3φ: C2×C6/C2C6 ⊆ Aut C261046-C26.1(C2xC6)312,8
C26.2(C2×C6) = C4×C13⋊C6φ: C2×C6/C2C6 ⊆ Aut C26526C26.2(C2xC6)312,9
C26.3(C2×C6) = D52⋊C3φ: C2×C6/C2C6 ⊆ Aut C26526+C26.3(C2xC6)312,10
C26.4(C2×C6) = C2×C26.C6φ: C2×C6/C2C6 ⊆ Aut C26104C26.4(C2xC6)312,11
C26.5(C2×C6) = D26⋊C6φ: C2×C6/C2C6 ⊆ Aut C26526C26.5(C2xC6)312,12
C26.6(C2×C6) = C2×C4×C13⋊C3φ: C2×C6/C22C3 ⊆ Aut C26104C26.6(C2xC6)312,22
C26.7(C2×C6) = D4×C13⋊C3φ: C2×C6/C22C3 ⊆ Aut C26526C26.7(C2xC6)312,23
C26.8(C2×C6) = Q8×C13⋊C3φ: C2×C6/C22C3 ⊆ Aut C261046C26.8(C2xC6)312,24
C26.9(C2×C6) = C3×Dic26φ: C2×C6/C6C2 ⊆ Aut C263122C26.9(C2xC6)312,27
C26.10(C2×C6) = C12×D13φ: C2×C6/C6C2 ⊆ Aut C261562C26.10(C2xC6)312,28
C26.11(C2×C6) = C3×D52φ: C2×C6/C6C2 ⊆ Aut C261562C26.11(C2xC6)312,29
C26.12(C2×C6) = C6×Dic13φ: C2×C6/C6C2 ⊆ Aut C26312C26.12(C2xC6)312,30
C26.13(C2×C6) = C3×C13⋊D4φ: C2×C6/C6C2 ⊆ Aut C261562C26.13(C2xC6)312,31
C26.14(C2×C6) = D4×C39central extension (φ=1)1562C26.14(C2xC6)312,43
C26.15(C2×C6) = Q8×C39central extension (φ=1)3122C26.15(C2xC6)312,44

׿
×
𝔽