Copied to
clipboard

G = D4×C13⋊C3order 312 = 23·3·13

Direct product of D4 and C13⋊C3

direct product, metacyclic, supersoluble, monomial

Aliases: D4×C13⋊C3, C523C6, (D4×C13)⋊C3, C133(C3×D4), (C2×C26)⋊5C6, C26.7(C2×C6), C4⋊(C2×C13⋊C3), (C4×C13⋊C3)⋊3C2, C222(C2×C13⋊C3), (C22×C13⋊C3)⋊3C2, C2.2(C22×C13⋊C3), (C2×C13⋊C3).7C22, SmallGroup(312,23)

Series: Derived Chief Lower central Upper central

C1C26 — D4×C13⋊C3
C1C13C26C2×C13⋊C3C22×C13⋊C3 — D4×C13⋊C3
C13C26 — D4×C13⋊C3
C1C2D4

Generators and relations for D4×C13⋊C3
 G = < a,b,c,d | a4=b2=c13=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c9 >

2C2
2C2
13C3
13C6
26C6
26C6
2C26
2C26
13C2×C6
13C2×C6
13C12
2C2×C13⋊C3
2C2×C13⋊C3
13C3×D4

Smallest permutation representation of D4×C13⋊C3
On 52 points
Generators in S52
(1 40 14 27)(2 41 15 28)(3 42 16 29)(4 43 17 30)(5 44 18 31)(6 45 19 32)(7 46 20 33)(8 47 21 34)(9 48 22 35)(10 49 23 36)(11 50 24 37)(12 51 25 38)(13 52 26 39)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)(15 17 23)(16 20 19)(18 26 24)(21 22 25)(28 30 36)(29 33 32)(31 39 37)(34 35 38)(41 43 49)(42 46 45)(44 52 50)(47 48 51)

G:=sub<Sym(52)| (1,40,14,27)(2,41,15,28)(3,42,16,29)(4,43,17,30)(5,44,18,31)(6,45,19,32)(7,46,20,33)(8,47,21,34)(9,48,22,35)(10,49,23,36)(11,50,24,37)(12,51,25,38)(13,52,26,39), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)>;

G:=Group( (1,40,14,27)(2,41,15,28)(3,42,16,29)(4,43,17,30)(5,44,18,31)(6,45,19,32)(7,46,20,33)(8,47,21,34)(9,48,22,35)(10,49,23,36)(11,50,24,37)(12,51,25,38)(13,52,26,39), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51) );

G=PermutationGroup([[(1,40,14,27),(2,41,15,28),(3,42,16,29),(4,43,17,30),(5,44,18,31),(6,45,19,32),(7,46,20,33),(8,47,21,34),(9,48,22,35),(10,49,23,36),(11,50,24,37),(12,51,25,38),(13,52,26,39)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12),(15,17,23),(16,20,19),(18,26,24),(21,22,25),(28,30,36),(29,33,32),(31,39,37),(34,35,38),(41,43,49),(42,46,45),(44,52,50),(47,48,51)]])

35 conjugacy classes

class 1 2A2B2C3A3B 4 6A6B6C6D6E6F12A12B13A13B13C13D26A26B26C26D26E···26L52A52B52C52D
order12223346666661212131313132626262626···2652525252
size1122131321313262626262626333333336···66666

35 irreducible representations

dim111111223336
type++++
imageC1C2C2C3C6C6D4C3×D4C13⋊C3C2×C13⋊C3C2×C13⋊C3D4×C13⋊C3
kernelD4×C13⋊C3C4×C13⋊C3C22×C13⋊C3D4×C13C52C2×C26C13⋊C3C13D4C4C22C1
# reps112224124484

Matrix representation of D4×C13⋊C3 in GL5(𝔽157)

01000
1560000
00100
00010
00001
,
01000
10000
00100
00010
00001
,
10000
01000
00135461
00100
00010
,
1440000
0144000
00100
0011013446
00974722

G:=sub<GL(5,GF(157))| [0,156,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,135,1,0,0,0,46,0,1,0,0,1,0,0],[144,0,0,0,0,0,144,0,0,0,0,0,1,110,97,0,0,0,134,47,0,0,0,46,22] >;

D4×C13⋊C3 in GAP, Magma, Sage, TeX

D_4\times C_{13}\rtimes C_3
% in TeX

G:=Group("D4xC13:C3");
// GroupNames label

G:=SmallGroup(312,23);
// by ID

G=gap.SmallGroup(312,23);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-13,141,464]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^13=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^9>;
// generators/relations

Export

Subgroup lattice of D4×C13⋊C3 in TeX

׿
×
𝔽