Copied to
clipboard

G = (C2×D20)⋊C4order 320 = 26·5

1st semidirect product of C2×D20 and C4 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×D20)⋊1C4, C4⋊Dic51C4, C10.13C4≀C2, (C2×C10).29D8, (C2×C4).103D20, C207D4.7C2, (C2×C20).221D4, C20.55D41C2, C22.7(D4⋊D5), (C2×C10).37SD16, C2.C426D5, (C22×C4).52D10, C53(C22.SD16), C22.7(Q8⋊D5), C2.3(D206C4), C2.4(D204C4), C10.22(C23⋊C4), (C22×C10).174D4, C23.70(C5⋊D4), C10.16(D4⋊C4), (C22×C20).89C22, C2.4(C23.1D10), C22.54(D10⋊C4), (C2×C4).8(C4×D5), (C2×C20).193(C2×C4), (C2×C10).97(C22⋊C4), (C5×C2.C42)⋊13C2, SmallGroup(320,9)

Series: Derived Chief Lower central Upper central

C1C2×C20 — (C2×D20)⋊C4
C1C5C10C2×C10C22×C10C22×C20C207D4 — (C2×D20)⋊C4
C5C2×C10C2×C20 — (C2×D20)⋊C4
C1C22C22×C4C2.C42

Generators and relations for (C2×D20)⋊C4
 G = < a,b,c,d | a2=b20=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=ab11, dcd-1=b15c >

Subgroups: 430 in 90 conjugacy classes, 29 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, Dic5, C20, D10, C2×C10, C2×C10, C2.C42, C22⋊C8, C4⋊D4, C52C8, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C22.SD16, C2×C52C8, C4⋊Dic5, D10⋊C4, C2×D20, C2×C5⋊D4, C22×C20, C22×C20, C20.55D4, C5×C2.C42, C207D4, (C2×D20)⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, D5, C22⋊C4, D8, SD16, D10, C23⋊C4, D4⋊C4, C4≀C2, C4×D5, D20, C5⋊D4, C22.SD16, D10⋊C4, D4⋊D5, Q8⋊D5, D204C4, C23.1D10, D206C4, (C2×D20)⋊C4

Smallest permutation representation of (C2×D20)⋊C4
On 80 points
Generators in S80
(1 79)(2 80)(3 61)(4 62)(5 63)(6 64)(7 65)(8 66)(9 67)(10 68)(11 69)(12 70)(13 71)(14 72)(15 73)(16 74)(17 75)(18 76)(19 77)(20 78)(21 60)(22 41)(23 42)(24 43)(25 44)(26 45)(27 46)(28 47)(29 48)(30 49)(31 50)(32 51)(33 52)(34 53)(35 54)(36 55)(37 56)(38 57)(39 58)(40 59)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 52)(2 51)(3 50)(4 49)(5 48)(6 47)(7 46)(8 45)(9 44)(10 43)(11 42)(12 41)(13 60)(14 59)(15 58)(16 57)(17 56)(18 55)(19 54)(20 53)(21 71)(22 70)(23 69)(24 68)(25 67)(26 66)(27 65)(28 64)(29 63)(30 62)(31 61)(32 80)(33 79)(34 78)(35 77)(36 76)(37 75)(38 74)(39 73)(40 72)
(2 70)(4 72)(6 74)(8 76)(10 78)(12 80)(14 62)(16 64)(18 66)(20 68)(21 45 60 26)(22 37 41 56)(23 47 42 28)(24 39 43 58)(25 49 44 30)(27 51 46 32)(29 53 48 34)(31 55 50 36)(33 57 52 38)(35 59 54 40)

G:=sub<Sym(80)| (1,79)(2,80)(3,61)(4,62)(5,63)(6,64)(7,65)(8,66)(9,67)(10,68)(11,69)(12,70)(13,71)(14,72)(15,73)(16,74)(17,75)(18,76)(19,77)(20,78)(21,60)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,48)(30,49)(31,50)(32,51)(33,52)(34,53)(35,54)(36,55)(37,56)(38,57)(39,58)(40,59), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,71)(22,70)(23,69)(24,68)(25,67)(26,66)(27,65)(28,64)(29,63)(30,62)(31,61)(32,80)(33,79)(34,78)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72), (2,70)(4,72)(6,74)(8,76)(10,78)(12,80)(14,62)(16,64)(18,66)(20,68)(21,45,60,26)(22,37,41,56)(23,47,42,28)(24,39,43,58)(25,49,44,30)(27,51,46,32)(29,53,48,34)(31,55,50,36)(33,57,52,38)(35,59,54,40)>;

G:=Group( (1,79)(2,80)(3,61)(4,62)(5,63)(6,64)(7,65)(8,66)(9,67)(10,68)(11,69)(12,70)(13,71)(14,72)(15,73)(16,74)(17,75)(18,76)(19,77)(20,78)(21,60)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,48)(30,49)(31,50)(32,51)(33,52)(34,53)(35,54)(36,55)(37,56)(38,57)(39,58)(40,59), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,71)(22,70)(23,69)(24,68)(25,67)(26,66)(27,65)(28,64)(29,63)(30,62)(31,61)(32,80)(33,79)(34,78)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72), (2,70)(4,72)(6,74)(8,76)(10,78)(12,80)(14,62)(16,64)(18,66)(20,68)(21,45,60,26)(22,37,41,56)(23,47,42,28)(24,39,43,58)(25,49,44,30)(27,51,46,32)(29,53,48,34)(31,55,50,36)(33,57,52,38)(35,59,54,40) );

G=PermutationGroup([[(1,79),(2,80),(3,61),(4,62),(5,63),(6,64),(7,65),(8,66),(9,67),(10,68),(11,69),(12,70),(13,71),(14,72),(15,73),(16,74),(17,75),(18,76),(19,77),(20,78),(21,60),(22,41),(23,42),(24,43),(25,44),(26,45),(27,46),(28,47),(29,48),(30,49),(31,50),(32,51),(33,52),(34,53),(35,54),(36,55),(37,56),(38,57),(39,58),(40,59)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,52),(2,51),(3,50),(4,49),(5,48),(6,47),(7,46),(8,45),(9,44),(10,43),(11,42),(12,41),(13,60),(14,59),(15,58),(16,57),(17,56),(18,55),(19,54),(20,53),(21,71),(22,70),(23,69),(24,68),(25,67),(26,66),(27,65),(28,64),(29,63),(30,62),(31,61),(32,80),(33,79),(34,78),(35,77),(36,76),(37,75),(38,74),(39,73),(40,72)], [(2,70),(4,72),(6,74),(8,76),(10,78),(12,80),(14,62),(16,64),(18,66),(20,68),(21,45,60,26),(22,37,41,56),(23,47,42,28),(24,39,43,58),(25,49,44,30),(27,51,46,32),(29,53,48,34),(31,55,50,36),(33,57,52,38),(35,59,54,40)]])

59 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C···4G4H5A5B8A8B8C8D10A···10N20A···20X
order1222222444···4455888810···1020···20
size11112240224···44022202020202···24···4

59 irreducible representations

dim111111222222222224444
type+++++++++++++
imageC1C2C2C2C4C4D4D4D5D8SD16D10C4≀C2C4×D5D20C5⋊D4D204C4C23⋊C4D4⋊D5Q8⋊D5C23.1D10
kernel(C2×D20)⋊C4C20.55D4C5×C2.C42C207D4C4⋊Dic5C2×D20C2×C20C22×C10C2.C42C2×C10C2×C10C22×C4C10C2×C4C2×C4C23C2C10C22C22C2
# reps1111221122224444161224

Matrix representation of (C2×D20)⋊C4 in GL6(𝔽41)

100000
010000
0040000
0004000
000010
000001
,
32260000
090000
009000
00383200
0000100
00002937
,
14160000
16270000
00382300
005300
0000540
00002436
,
100000
7400000
001000
0015900
000010
000001

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[32,0,0,0,0,0,26,9,0,0,0,0,0,0,9,38,0,0,0,0,0,32,0,0,0,0,0,0,10,29,0,0,0,0,0,37],[14,16,0,0,0,0,16,27,0,0,0,0,0,0,38,5,0,0,0,0,23,3,0,0,0,0,0,0,5,24,0,0,0,0,40,36],[1,7,0,0,0,0,0,40,0,0,0,0,0,0,1,15,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

(C2×D20)⋊C4 in GAP, Magma, Sage, TeX

(C_2\times D_{20})\rtimes C_4
% in TeX

G:=Group("(C2xD20):C4");
// GroupNames label

G:=SmallGroup(320,9);
// by ID

G=gap.SmallGroup(320,9);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,141,36,422,1571,570,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=a*b^11,d*c*d^-1=b^15*c>;
// generators/relations

׿
×
𝔽