Copied to
clipboard

G = C2×C4.12D20order 320 = 26·5

Direct product of C2 and C4.12D20

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C4.12D20, M4(2).32D10, (C2×C4).53D20, C4.67(C2×D20), C20.422(C2×D4), (C2×C20).176D4, C23.56(C4×D5), C102(C4.10D4), (C2×C20).418C23, (C2×Dic10).28C4, (C22×C4).144D10, (C2×M4(2)).17D5, C4.29(D10⋊C4), (C22×Dic5).5C4, C20.101(C22⋊C4), (C10×M4(2)).28C2, C4.Dic5.43C22, (C22×C20).191C22, (C22×Dic10).16C2, (C5×M4(2)).35C22, C22.51(D10⋊C4), (C2×Dic10).287C22, (C2×C4).55(C4×D5), C54(C2×C4.10D4), C22.22(C2×C4×D5), C4.115(C2×C5⋊D4), (C2×C20).284(C2×C4), (C2×Dic5).6(C2×C4), C2.33(C2×D10⋊C4), (C2×C4).257(C5⋊D4), C10.102(C2×C22⋊C4), (C2×C4).122(C22×D5), (C2×C4.Dic5).26C2, (C2×C10).117(C22×C4), (C22×C10).140(C2×C4), (C2×C10).131(C22⋊C4), SmallGroup(320,763)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×C4.12D20
C1C5C10C20C2×C20C2×Dic10C22×Dic10 — C2×C4.12D20
C5C10C2×C10 — C2×C4.12D20
C1C22C22×C4C2×M4(2)

Generators and relations for C2×C4.12D20
 G = < a,b,c,d | a2=b20=1, c4=d2=b10, ab=ba, ac=ca, ad=da, cbc-1=dbd-1=b-1, dcd-1=b5c3 >

Subgroups: 478 in 146 conjugacy classes, 63 normal (39 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, Q8, C23, C10, C10, C10, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C2×Q8, Dic5, C20, C2×C10, C2×C10, C4.10D4, C2×M4(2), C2×M4(2), C22×Q8, C52C8, C40, Dic10, C2×Dic5, C2×Dic5, C2×C20, C22×C10, C2×C4.10D4, C2×C52C8, C4.Dic5, C4.Dic5, C2×C40, C5×M4(2), C5×M4(2), C2×Dic10, C2×Dic10, C22×Dic5, C22×C20, C4.12D20, C2×C4.Dic5, C10×M4(2), C22×Dic10, C2×C4.12D20
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, D10, C4.10D4, C2×C22⋊C4, C4×D5, D20, C5⋊D4, C22×D5, C2×C4.10D4, D10⋊C4, C2×C4×D5, C2×D20, C2×C5⋊D4, C4.12D20, C2×D10⋊C4, C2×C4.12D20

Smallest permutation representation of C2×C4.12D20
On 160 points
Generators in S160
(1 122)(2 123)(3 124)(4 125)(5 126)(6 127)(7 128)(8 129)(9 130)(10 131)(11 132)(12 133)(13 134)(14 135)(15 136)(16 137)(17 138)(18 139)(19 140)(20 121)(21 99)(22 100)(23 81)(24 82)(25 83)(26 84)(27 85)(28 86)(29 87)(30 88)(31 89)(32 90)(33 91)(34 92)(35 93)(36 94)(37 95)(38 96)(39 97)(40 98)(41 150)(42 151)(43 152)(44 153)(45 154)(46 155)(47 156)(48 157)(49 158)(50 159)(51 160)(52 141)(53 142)(54 143)(55 144)(56 145)(57 146)(58 147)(59 148)(60 149)(61 112)(62 113)(63 114)(64 115)(65 116)(66 117)(67 118)(68 119)(69 120)(70 101)(71 102)(72 103)(73 104)(74 105)(75 106)(76 107)(77 108)(78 109)(79 110)(80 111)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 159 127 45 11 149 137 55)(2 158 128 44 12 148 138 54)(3 157 129 43 13 147 139 53)(4 156 130 42 14 146 140 52)(5 155 131 41 15 145 121 51)(6 154 132 60 16 144 122 50)(7 153 133 59 17 143 123 49)(8 152 134 58 18 142 124 48)(9 151 135 57 19 141 125 47)(10 150 136 56 20 160 126 46)(21 105 94 79 31 115 84 69)(22 104 95 78 32 114 85 68)(23 103 96 77 33 113 86 67)(24 102 97 76 34 112 87 66)(25 101 98 75 35 111 88 65)(26 120 99 74 36 110 89 64)(27 119 100 73 37 109 90 63)(28 118 81 72 38 108 91 62)(29 117 82 71 39 107 92 61)(30 116 83 70 40 106 93 80)
(1 102 11 112)(2 101 12 111)(3 120 13 110)(4 119 14 109)(5 118 15 108)(6 117 16 107)(7 116 17 106)(8 115 18 105)(9 114 19 104)(10 113 20 103)(21 157 31 147)(22 156 32 146)(23 155 33 145)(24 154 34 144)(25 153 35 143)(26 152 36 142)(27 151 37 141)(28 150 38 160)(29 149 39 159)(30 148 40 158)(41 96 51 86)(42 95 52 85)(43 94 53 84)(44 93 54 83)(45 92 55 82)(46 91 56 81)(47 90 57 100)(48 89 58 99)(49 88 59 98)(50 87 60 97)(61 122 71 132)(62 121 72 131)(63 140 73 130)(64 139 74 129)(65 138 75 128)(66 137 76 127)(67 136 77 126)(68 135 78 125)(69 134 79 124)(70 133 80 123)

G:=sub<Sym(160)| (1,122)(2,123)(3,124)(4,125)(5,126)(6,127)(7,128)(8,129)(9,130)(10,131)(11,132)(12,133)(13,134)(14,135)(15,136)(16,137)(17,138)(18,139)(19,140)(20,121)(21,99)(22,100)(23,81)(24,82)(25,83)(26,84)(27,85)(28,86)(29,87)(30,88)(31,89)(32,90)(33,91)(34,92)(35,93)(36,94)(37,95)(38,96)(39,97)(40,98)(41,150)(42,151)(43,152)(44,153)(45,154)(46,155)(47,156)(48,157)(49,158)(50,159)(51,160)(52,141)(53,142)(54,143)(55,144)(56,145)(57,146)(58,147)(59,148)(60,149)(61,112)(62,113)(63,114)(64,115)(65,116)(66,117)(67,118)(68,119)(69,120)(70,101)(71,102)(72,103)(73,104)(74,105)(75,106)(76,107)(77,108)(78,109)(79,110)(80,111), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,159,127,45,11,149,137,55)(2,158,128,44,12,148,138,54)(3,157,129,43,13,147,139,53)(4,156,130,42,14,146,140,52)(5,155,131,41,15,145,121,51)(6,154,132,60,16,144,122,50)(7,153,133,59,17,143,123,49)(8,152,134,58,18,142,124,48)(9,151,135,57,19,141,125,47)(10,150,136,56,20,160,126,46)(21,105,94,79,31,115,84,69)(22,104,95,78,32,114,85,68)(23,103,96,77,33,113,86,67)(24,102,97,76,34,112,87,66)(25,101,98,75,35,111,88,65)(26,120,99,74,36,110,89,64)(27,119,100,73,37,109,90,63)(28,118,81,72,38,108,91,62)(29,117,82,71,39,107,92,61)(30,116,83,70,40,106,93,80), (1,102,11,112)(2,101,12,111)(3,120,13,110)(4,119,14,109)(5,118,15,108)(6,117,16,107)(7,116,17,106)(8,115,18,105)(9,114,19,104)(10,113,20,103)(21,157,31,147)(22,156,32,146)(23,155,33,145)(24,154,34,144)(25,153,35,143)(26,152,36,142)(27,151,37,141)(28,150,38,160)(29,149,39,159)(30,148,40,158)(41,96,51,86)(42,95,52,85)(43,94,53,84)(44,93,54,83)(45,92,55,82)(46,91,56,81)(47,90,57,100)(48,89,58,99)(49,88,59,98)(50,87,60,97)(61,122,71,132)(62,121,72,131)(63,140,73,130)(64,139,74,129)(65,138,75,128)(66,137,76,127)(67,136,77,126)(68,135,78,125)(69,134,79,124)(70,133,80,123)>;

G:=Group( (1,122)(2,123)(3,124)(4,125)(5,126)(6,127)(7,128)(8,129)(9,130)(10,131)(11,132)(12,133)(13,134)(14,135)(15,136)(16,137)(17,138)(18,139)(19,140)(20,121)(21,99)(22,100)(23,81)(24,82)(25,83)(26,84)(27,85)(28,86)(29,87)(30,88)(31,89)(32,90)(33,91)(34,92)(35,93)(36,94)(37,95)(38,96)(39,97)(40,98)(41,150)(42,151)(43,152)(44,153)(45,154)(46,155)(47,156)(48,157)(49,158)(50,159)(51,160)(52,141)(53,142)(54,143)(55,144)(56,145)(57,146)(58,147)(59,148)(60,149)(61,112)(62,113)(63,114)(64,115)(65,116)(66,117)(67,118)(68,119)(69,120)(70,101)(71,102)(72,103)(73,104)(74,105)(75,106)(76,107)(77,108)(78,109)(79,110)(80,111), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,159,127,45,11,149,137,55)(2,158,128,44,12,148,138,54)(3,157,129,43,13,147,139,53)(4,156,130,42,14,146,140,52)(5,155,131,41,15,145,121,51)(6,154,132,60,16,144,122,50)(7,153,133,59,17,143,123,49)(8,152,134,58,18,142,124,48)(9,151,135,57,19,141,125,47)(10,150,136,56,20,160,126,46)(21,105,94,79,31,115,84,69)(22,104,95,78,32,114,85,68)(23,103,96,77,33,113,86,67)(24,102,97,76,34,112,87,66)(25,101,98,75,35,111,88,65)(26,120,99,74,36,110,89,64)(27,119,100,73,37,109,90,63)(28,118,81,72,38,108,91,62)(29,117,82,71,39,107,92,61)(30,116,83,70,40,106,93,80), (1,102,11,112)(2,101,12,111)(3,120,13,110)(4,119,14,109)(5,118,15,108)(6,117,16,107)(7,116,17,106)(8,115,18,105)(9,114,19,104)(10,113,20,103)(21,157,31,147)(22,156,32,146)(23,155,33,145)(24,154,34,144)(25,153,35,143)(26,152,36,142)(27,151,37,141)(28,150,38,160)(29,149,39,159)(30,148,40,158)(41,96,51,86)(42,95,52,85)(43,94,53,84)(44,93,54,83)(45,92,55,82)(46,91,56,81)(47,90,57,100)(48,89,58,99)(49,88,59,98)(50,87,60,97)(61,122,71,132)(62,121,72,131)(63,140,73,130)(64,139,74,129)(65,138,75,128)(66,137,76,127)(67,136,77,126)(68,135,78,125)(69,134,79,124)(70,133,80,123) );

G=PermutationGroup([[(1,122),(2,123),(3,124),(4,125),(5,126),(6,127),(7,128),(8,129),(9,130),(10,131),(11,132),(12,133),(13,134),(14,135),(15,136),(16,137),(17,138),(18,139),(19,140),(20,121),(21,99),(22,100),(23,81),(24,82),(25,83),(26,84),(27,85),(28,86),(29,87),(30,88),(31,89),(32,90),(33,91),(34,92),(35,93),(36,94),(37,95),(38,96),(39,97),(40,98),(41,150),(42,151),(43,152),(44,153),(45,154),(46,155),(47,156),(48,157),(49,158),(50,159),(51,160),(52,141),(53,142),(54,143),(55,144),(56,145),(57,146),(58,147),(59,148),(60,149),(61,112),(62,113),(63,114),(64,115),(65,116),(66,117),(67,118),(68,119),(69,120),(70,101),(71,102),(72,103),(73,104),(74,105),(75,106),(76,107),(77,108),(78,109),(79,110),(80,111)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,159,127,45,11,149,137,55),(2,158,128,44,12,148,138,54),(3,157,129,43,13,147,139,53),(4,156,130,42,14,146,140,52),(5,155,131,41,15,145,121,51),(6,154,132,60,16,144,122,50),(7,153,133,59,17,143,123,49),(8,152,134,58,18,142,124,48),(9,151,135,57,19,141,125,47),(10,150,136,56,20,160,126,46),(21,105,94,79,31,115,84,69),(22,104,95,78,32,114,85,68),(23,103,96,77,33,113,86,67),(24,102,97,76,34,112,87,66),(25,101,98,75,35,111,88,65),(26,120,99,74,36,110,89,64),(27,119,100,73,37,109,90,63),(28,118,81,72,38,108,91,62),(29,117,82,71,39,107,92,61),(30,116,83,70,40,106,93,80)], [(1,102,11,112),(2,101,12,111),(3,120,13,110),(4,119,14,109),(5,118,15,108),(6,117,16,107),(7,116,17,106),(8,115,18,105),(9,114,19,104),(10,113,20,103),(21,157,31,147),(22,156,32,146),(23,155,33,145),(24,154,34,144),(25,153,35,143),(26,152,36,142),(27,151,37,141),(28,150,38,160),(29,149,39,159),(30,148,40,158),(41,96,51,86),(42,95,52,85),(43,94,53,84),(44,93,54,83),(45,92,55,82),(46,91,56,81),(47,90,57,100),(48,89,58,99),(49,88,59,98),(50,87,60,97),(61,122,71,132),(62,121,72,131),(63,140,73,130),(64,139,74,129),(65,138,75,128),(66,137,76,127),(67,136,77,126),(68,135,78,125),(69,134,79,124),(70,133,80,123)]])

62 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H5A5B8A8B8C8D8E8F8G8H10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222244444444558888888810···101010101020···202020202040···40
size111122222220202020224444202020202···244442···244444···4

62 irreducible representations

dim11111112222222244
type++++++++++--
imageC1C2C2C2C2C4C4D4D5D10D10C4×D5D20C5⋊D4C4×D5C4.10D4C4.12D20
kernelC2×C4.12D20C4.12D20C2×C4.Dic5C10×M4(2)C22×Dic10C2×Dic10C22×Dic5C2×C20C2×M4(2)M4(2)C22×C4C2×C4C2×C4C2×C4C23C10C2
# reps14111444242488428

Matrix representation of C2×C4.12D20 in GL6(𝔽41)

4000000
0400000
0040000
0004000
0000400
0000040
,
1400000
3660000
0091100
00301400
00003911
00001425
,
3530000
1560000
00124439
0017402739
00817231
00109318
,
28270000
12130000
0003200
0032000
0000320
000049

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,36,0,0,0,0,40,6,0,0,0,0,0,0,9,30,0,0,0,0,11,14,0,0,0,0,0,0,39,14,0,0,0,0,11,25],[35,15,0,0,0,0,3,6,0,0,0,0,0,0,1,17,8,10,0,0,24,40,17,9,0,0,4,27,23,3,0,0,39,39,1,18],[28,12,0,0,0,0,27,13,0,0,0,0,0,0,0,32,0,0,0,0,32,0,0,0,0,0,0,0,32,4,0,0,0,0,0,9] >;

C2×C4.12D20 in GAP, Magma, Sage, TeX

C_2\times C_4._{12}D_{20}
% in TeX

G:=Group("C2xC4.12D20");
// GroupNames label

G:=SmallGroup(320,763);
// by ID

G=gap.SmallGroup(320,763);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,422,58,1123,136,438,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=1,c^4=d^2=b^10,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b^5*c^3>;
// generators/relations

׿
×
𝔽