metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C40⋊29D4, C22⋊1D40, C23.25D20, (C2×C10)⋊5D8, (C2×D40)⋊9C2, C5⋊4(C8⋊7D4), (C22×C8)⋊6D5, C20⋊7D4⋊2C2, C8⋊13(C5⋊D4), C40⋊5C4⋊14C2, C10.17(C2×D8), (C2×C4).68D20, C2.17(C2×D40), D20⋊5C4⋊3C2, (C22×C40)⋊10C2, C20.413(C2×D4), (C2×C8).308D10, (C2×C20).356D4, C10.18(C4○D8), C4.112(C4○D20), C20.228(C4○D4), C10.71(C4⋊D4), C2.19(C20⋊7D4), (C2×C20).769C23, (C2×C40).380C22, (C2×D20).21C22, (C22×C10).141D4, C22.132(C2×D20), (C22×C4).431D10, C4⋊Dic5.24C22, C2.18(D40⋊7C2), (C22×C20).519C22, C4.106(C2×C5⋊D4), (C2×C10).159(C2×D4), (C2×C4).717(C22×D5), SmallGroup(320,742)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C40⋊29D4
G = < a,b,c | a40=b4=c2=1, bab-1=cac=a-1, cbc=b-1 >
Subgroups: 694 in 134 conjugacy classes, 47 normal (31 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, D4⋊C4, C2.D8, C4⋊D4, C22×C8, C2×D8, C40, C40, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C8⋊7D4, D40, C4⋊Dic5, D10⋊C4, C2×C40, C2×C40, C2×D20, C2×C5⋊D4, C22×C20, C40⋊5C4, D20⋊5C4, C2×D40, C20⋊7D4, C22×C40, C40⋊29D4
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, C4○D4, D10, C4⋊D4, C2×D8, C4○D8, D20, C5⋊D4, C22×D5, C8⋊7D4, D40, C2×D20, C4○D20, C2×C5⋊D4, C2×D40, D40⋊7C2, C20⋊7D4, C40⋊29D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 116 149 79)(2 115 150 78)(3 114 151 77)(4 113 152 76)(5 112 153 75)(6 111 154 74)(7 110 155 73)(8 109 156 72)(9 108 157 71)(10 107 158 70)(11 106 159 69)(12 105 160 68)(13 104 121 67)(14 103 122 66)(15 102 123 65)(16 101 124 64)(17 100 125 63)(18 99 126 62)(19 98 127 61)(20 97 128 60)(21 96 129 59)(22 95 130 58)(23 94 131 57)(24 93 132 56)(25 92 133 55)(26 91 134 54)(27 90 135 53)(28 89 136 52)(29 88 137 51)(30 87 138 50)(31 86 139 49)(32 85 140 48)(33 84 141 47)(34 83 142 46)(35 82 143 45)(36 81 144 44)(37 120 145 43)(38 119 146 42)(39 118 147 41)(40 117 148 80)
(2 40)(3 39)(4 38)(5 37)(6 36)(7 35)(8 34)(9 33)(10 32)(11 31)(12 30)(13 29)(14 28)(15 27)(16 26)(17 25)(18 24)(19 23)(20 22)(41 114)(42 113)(43 112)(44 111)(45 110)(46 109)(47 108)(48 107)(49 106)(50 105)(51 104)(52 103)(53 102)(54 101)(55 100)(56 99)(57 98)(58 97)(59 96)(60 95)(61 94)(62 93)(63 92)(64 91)(65 90)(66 89)(67 88)(68 87)(69 86)(70 85)(71 84)(72 83)(73 82)(74 81)(75 120)(76 119)(77 118)(78 117)(79 116)(80 115)(121 137)(122 136)(123 135)(124 134)(125 133)(126 132)(127 131)(128 130)(138 160)(139 159)(140 158)(141 157)(142 156)(143 155)(144 154)(145 153)(146 152)(147 151)(148 150)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,116,149,79)(2,115,150,78)(3,114,151,77)(4,113,152,76)(5,112,153,75)(6,111,154,74)(7,110,155,73)(8,109,156,72)(9,108,157,71)(10,107,158,70)(11,106,159,69)(12,105,160,68)(13,104,121,67)(14,103,122,66)(15,102,123,65)(16,101,124,64)(17,100,125,63)(18,99,126,62)(19,98,127,61)(20,97,128,60)(21,96,129,59)(22,95,130,58)(23,94,131,57)(24,93,132,56)(25,92,133,55)(26,91,134,54)(27,90,135,53)(28,89,136,52)(29,88,137,51)(30,87,138,50)(31,86,139,49)(32,85,140,48)(33,84,141,47)(34,83,142,46)(35,82,143,45)(36,81,144,44)(37,120,145,43)(38,119,146,42)(39,118,147,41)(40,117,148,80), (2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)(41,114)(42,113)(43,112)(44,111)(45,110)(46,109)(47,108)(48,107)(49,106)(50,105)(51,104)(52,103)(53,102)(54,101)(55,100)(56,99)(57,98)(58,97)(59,96)(60,95)(61,94)(62,93)(63,92)(64,91)(65,90)(66,89)(67,88)(68,87)(69,86)(70,85)(71,84)(72,83)(73,82)(74,81)(75,120)(76,119)(77,118)(78,117)(79,116)(80,115)(121,137)(122,136)(123,135)(124,134)(125,133)(126,132)(127,131)(128,130)(138,160)(139,159)(140,158)(141,157)(142,156)(143,155)(144,154)(145,153)(146,152)(147,151)(148,150)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,116,149,79)(2,115,150,78)(3,114,151,77)(4,113,152,76)(5,112,153,75)(6,111,154,74)(7,110,155,73)(8,109,156,72)(9,108,157,71)(10,107,158,70)(11,106,159,69)(12,105,160,68)(13,104,121,67)(14,103,122,66)(15,102,123,65)(16,101,124,64)(17,100,125,63)(18,99,126,62)(19,98,127,61)(20,97,128,60)(21,96,129,59)(22,95,130,58)(23,94,131,57)(24,93,132,56)(25,92,133,55)(26,91,134,54)(27,90,135,53)(28,89,136,52)(29,88,137,51)(30,87,138,50)(31,86,139,49)(32,85,140,48)(33,84,141,47)(34,83,142,46)(35,82,143,45)(36,81,144,44)(37,120,145,43)(38,119,146,42)(39,118,147,41)(40,117,148,80), (2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)(41,114)(42,113)(43,112)(44,111)(45,110)(46,109)(47,108)(48,107)(49,106)(50,105)(51,104)(52,103)(53,102)(54,101)(55,100)(56,99)(57,98)(58,97)(59,96)(60,95)(61,94)(62,93)(63,92)(64,91)(65,90)(66,89)(67,88)(68,87)(69,86)(70,85)(71,84)(72,83)(73,82)(74,81)(75,120)(76,119)(77,118)(78,117)(79,116)(80,115)(121,137)(122,136)(123,135)(124,134)(125,133)(126,132)(127,131)(128,130)(138,160)(139,159)(140,158)(141,157)(142,156)(143,155)(144,154)(145,153)(146,152)(147,151)(148,150) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,116,149,79),(2,115,150,78),(3,114,151,77),(4,113,152,76),(5,112,153,75),(6,111,154,74),(7,110,155,73),(8,109,156,72),(9,108,157,71),(10,107,158,70),(11,106,159,69),(12,105,160,68),(13,104,121,67),(14,103,122,66),(15,102,123,65),(16,101,124,64),(17,100,125,63),(18,99,126,62),(19,98,127,61),(20,97,128,60),(21,96,129,59),(22,95,130,58),(23,94,131,57),(24,93,132,56),(25,92,133,55),(26,91,134,54),(27,90,135,53),(28,89,136,52),(29,88,137,51),(30,87,138,50),(31,86,139,49),(32,85,140,48),(33,84,141,47),(34,83,142,46),(35,82,143,45),(36,81,144,44),(37,120,145,43),(38,119,146,42),(39,118,147,41),(40,117,148,80)], [(2,40),(3,39),(4,38),(5,37),(6,36),(7,35),(8,34),(9,33),(10,32),(11,31),(12,30),(13,29),(14,28),(15,27),(16,26),(17,25),(18,24),(19,23),(20,22),(41,114),(42,113),(43,112),(44,111),(45,110),(46,109),(47,108),(48,107),(49,106),(50,105),(51,104),(52,103),(53,102),(54,101),(55,100),(56,99),(57,98),(58,97),(59,96),(60,95),(61,94),(62,93),(63,92),(64,91),(65,90),(66,89),(67,88),(68,87),(69,86),(70,85),(71,84),(72,83),(73,82),(74,81),(75,120),(76,119),(77,118),(78,117),(79,116),(80,115),(121,137),(122,136),(123,135),(124,134),(125,133),(126,132),(127,131),(128,130),(138,160),(139,159),(140,158),(141,157),(142,156),(143,155),(144,154),(145,153),(146,152),(147,151),(148,150)]])
86 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 8A | ··· | 8H | 10A | ··· | 10N | 20A | ··· | 20P | 40A | ··· | 40AF |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | ··· | 8 | 10 | ··· | 10 | 20 | ··· | 20 | 40 | ··· | 40 |
| size | 1 | 1 | 1 | 1 | 2 | 2 | 40 | 40 | 2 | 2 | 2 | 2 | 40 | 40 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
86 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | D5 | C4○D4 | D8 | D10 | D10 | C4○D8 | C5⋊D4 | D20 | D20 | C4○D20 | D40 | D40⋊7C2 |
| kernel | C40⋊29D4 | C40⋊5C4 | D20⋊5C4 | C2×D40 | C20⋊7D4 | C22×C40 | C40 | C2×C20 | C22×C10 | C22×C8 | C20 | C2×C10 | C2×C8 | C22×C4 | C10 | C8 | C2×C4 | C23 | C4 | C22 | C2 |
| # reps | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 4 | 8 | 4 | 4 | 8 | 16 | 16 |
Matrix representation of C40⋊29D4 ►in GL4(𝔽41) generated by
| 35 | 26 | 0 | 0 |
| 12 | 23 | 0 | 0 |
| 0 | 0 | 3 | 23 |
| 0 | 0 | 18 | 29 |
| 1 | 0 | 0 | 0 |
| 9 | 40 | 0 | 0 |
| 0 | 0 | 21 | 21 |
| 0 | 0 | 18 | 20 |
| 1 | 0 | 0 | 0 |
| 9 | 40 | 0 | 0 |
| 0 | 0 | 6 | 35 |
| 0 | 0 | 40 | 35 |
G:=sub<GL(4,GF(41))| [35,12,0,0,26,23,0,0,0,0,3,18,0,0,23,29],[1,9,0,0,0,40,0,0,0,0,21,18,0,0,21,20],[1,9,0,0,0,40,0,0,0,0,6,40,0,0,35,35] >;
C40⋊29D4 in GAP, Magma, Sage, TeX
C_{40}\rtimes_{29}D_4 % in TeX
G:=Group("C40:29D4"); // GroupNames label
G:=SmallGroup(320,742);
// by ID
G=gap.SmallGroup(320,742);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,344,254,1684,102,12550]);
// Polycyclic
G:=Group<a,b,c|a^40=b^4=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations