direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4×D10⋊C4, D10⋊3C42, C2.3(C4×D20), (C2×C42)⋊1D5, C10.47(C4×D4), C20⋊8(C22⋊C4), (C2×C4).168D20, (C2×C20).494D4, C2.13(D5×C42), C10.32(C2×C42), C22.38(C2×D20), (C22×C4).459D10, C2.4(C42⋊D5), C22.47(C4○D20), (C23×D5).98C22, C23.271(C22×D5), C10.10C42⋊48C2, C10.33(C42⋊C2), (C22×C20).477C22, (C22×C10).313C23, (C22×Dic5).204C22, (C2×C4×C20)⋊15C2, (C2×C4×D5)⋊15C4, C5⋊4(C4×C22⋊C4), (C2×C4)⋊11(C4×D5), C2.2(C4×C5⋊D4), (C2×C20)⋊40(C2×C4), (C2×C4×Dic5)⋊19C2, C22.53(C2×C4×D5), (D5×C22×C4).18C2, (C2×Dic5)⋊22(C2×C4), C2.1(C2×D10⋊C4), (C2×C10).427(C2×D4), C10.73(C2×C22⋊C4), C22.42(C2×C5⋊D4), (C2×C10).72(C4○D4), (C2×C4).272(C5⋊D4), (C22×D5).77(C2×C4), (C2×D10⋊C4).30C2, (C2×C10).200(C22×C4), SmallGroup(320,565)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4×D10⋊C4
G = < a,b,c,d | a4=b10=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd-1=b5c >
Subgroups: 894 in 258 conjugacy classes, 107 normal (25 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, D5, C10, C10, C42, C22⋊C4, C22×C4, C22×C4, C22×C4, C24, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2.C42, C2×C42, C2×C42, C2×C22⋊C4, C23×C4, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C4×C22⋊C4, C4×Dic5, D10⋊C4, C4×C20, C2×C4×D5, C2×C4×D5, C22×Dic5, C22×Dic5, C22×C20, C22×C20, C23×D5, C10.10C42, C2×C4×Dic5, C2×D10⋊C4, C2×C4×C20, D5×C22×C4, C4×D10⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C42, C22⋊C4, C22×C4, C2×D4, C4○D4, D10, C2×C42, C2×C22⋊C4, C42⋊C2, C4×D4, C4×D5, D20, C5⋊D4, C22×D5, C4×C22⋊C4, D10⋊C4, C2×C4×D5, C2×D20, C4○D20, C2×C5⋊D4, D5×C42, C42⋊D5, C4×D20, C2×D10⋊C4, C4×C5⋊D4, C4×D10⋊C4
(1 92 17 82)(2 93 18 83)(3 94 19 84)(4 95 20 85)(5 96 11 86)(6 97 12 87)(7 98 13 88)(8 99 14 89)(9 100 15 90)(10 91 16 81)(21 116 31 106)(22 117 32 107)(23 118 33 108)(24 119 34 109)(25 120 35 110)(26 111 36 101)(27 112 37 102)(28 113 38 103)(29 114 39 104)(30 115 40 105)(41 136 51 126)(42 137 52 127)(43 138 53 128)(44 139 54 129)(45 140 55 130)(46 131 56 121)(47 132 57 122)(48 133 58 123)(49 134 59 124)(50 135 60 125)(61 156 71 146)(62 157 72 147)(63 158 73 148)(64 159 74 149)(65 160 75 150)(66 151 76 141)(67 152 77 142)(68 153 78 143)(69 154 79 144)(70 155 80 145)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 12)(13 20)(14 19)(15 18)(16 17)(21 22)(23 30)(24 29)(25 28)(26 27)(31 32)(33 40)(34 39)(35 38)(36 37)(41 47)(42 46)(43 45)(48 50)(51 57)(52 56)(53 55)(58 60)(61 67)(62 66)(63 65)(68 70)(71 77)(72 76)(73 75)(78 80)(81 82)(83 90)(84 89)(85 88)(86 87)(91 92)(93 100)(94 99)(95 98)(96 97)(101 102)(103 110)(104 109)(105 108)(106 107)(111 112)(113 120)(114 119)(115 118)(116 117)(121 127)(122 126)(123 125)(128 130)(131 137)(132 136)(133 135)(138 140)(141 147)(142 146)(143 145)(148 150)(151 157)(152 156)(153 155)(158 160)
(1 157 37 127)(2 158 38 128)(3 159 39 129)(4 160 40 130)(5 151 31 121)(6 152 32 122)(7 153 33 123)(8 154 34 124)(9 155 35 125)(10 156 36 126)(11 141 21 131)(12 142 22 132)(13 143 23 133)(14 144 24 134)(15 145 25 135)(16 146 26 136)(17 147 27 137)(18 148 28 138)(19 149 29 139)(20 150 30 140)(41 91 71 101)(42 92 72 102)(43 93 73 103)(44 94 74 104)(45 95 75 105)(46 96 76 106)(47 97 77 107)(48 98 78 108)(49 99 79 109)(50 100 80 110)(51 81 61 111)(52 82 62 112)(53 83 63 113)(54 84 64 114)(55 85 65 115)(56 86 66 116)(57 87 67 117)(58 88 68 118)(59 89 69 119)(60 90 70 120)
G:=sub<Sym(160)| (1,92,17,82)(2,93,18,83)(3,94,19,84)(4,95,20,85)(5,96,11,86)(6,97,12,87)(7,98,13,88)(8,99,14,89)(9,100,15,90)(10,91,16,81)(21,116,31,106)(22,117,32,107)(23,118,33,108)(24,119,34,109)(25,120,35,110)(26,111,36,101)(27,112,37,102)(28,113,38,103)(29,114,39,104)(30,115,40,105)(41,136,51,126)(42,137,52,127)(43,138,53,128)(44,139,54,129)(45,140,55,130)(46,131,56,121)(47,132,57,122)(48,133,58,123)(49,134,59,124)(50,135,60,125)(61,156,71,146)(62,157,72,147)(63,158,73,148)(64,159,74,149)(65,160,75,150)(66,151,76,141)(67,152,77,142)(68,153,78,143)(69,154,79,144)(70,155,80,145), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10)(2,9)(3,8)(4,7)(5,6)(11,12)(13,20)(14,19)(15,18)(16,17)(21,22)(23,30)(24,29)(25,28)(26,27)(31,32)(33,40)(34,39)(35,38)(36,37)(41,47)(42,46)(43,45)(48,50)(51,57)(52,56)(53,55)(58,60)(61,67)(62,66)(63,65)(68,70)(71,77)(72,76)(73,75)(78,80)(81,82)(83,90)(84,89)(85,88)(86,87)(91,92)(93,100)(94,99)(95,98)(96,97)(101,102)(103,110)(104,109)(105,108)(106,107)(111,112)(113,120)(114,119)(115,118)(116,117)(121,127)(122,126)(123,125)(128,130)(131,137)(132,136)(133,135)(138,140)(141,147)(142,146)(143,145)(148,150)(151,157)(152,156)(153,155)(158,160), (1,157,37,127)(2,158,38,128)(3,159,39,129)(4,160,40,130)(5,151,31,121)(6,152,32,122)(7,153,33,123)(8,154,34,124)(9,155,35,125)(10,156,36,126)(11,141,21,131)(12,142,22,132)(13,143,23,133)(14,144,24,134)(15,145,25,135)(16,146,26,136)(17,147,27,137)(18,148,28,138)(19,149,29,139)(20,150,30,140)(41,91,71,101)(42,92,72,102)(43,93,73,103)(44,94,74,104)(45,95,75,105)(46,96,76,106)(47,97,77,107)(48,98,78,108)(49,99,79,109)(50,100,80,110)(51,81,61,111)(52,82,62,112)(53,83,63,113)(54,84,64,114)(55,85,65,115)(56,86,66,116)(57,87,67,117)(58,88,68,118)(59,89,69,119)(60,90,70,120)>;
G:=Group( (1,92,17,82)(2,93,18,83)(3,94,19,84)(4,95,20,85)(5,96,11,86)(6,97,12,87)(7,98,13,88)(8,99,14,89)(9,100,15,90)(10,91,16,81)(21,116,31,106)(22,117,32,107)(23,118,33,108)(24,119,34,109)(25,120,35,110)(26,111,36,101)(27,112,37,102)(28,113,38,103)(29,114,39,104)(30,115,40,105)(41,136,51,126)(42,137,52,127)(43,138,53,128)(44,139,54,129)(45,140,55,130)(46,131,56,121)(47,132,57,122)(48,133,58,123)(49,134,59,124)(50,135,60,125)(61,156,71,146)(62,157,72,147)(63,158,73,148)(64,159,74,149)(65,160,75,150)(66,151,76,141)(67,152,77,142)(68,153,78,143)(69,154,79,144)(70,155,80,145), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10)(2,9)(3,8)(4,7)(5,6)(11,12)(13,20)(14,19)(15,18)(16,17)(21,22)(23,30)(24,29)(25,28)(26,27)(31,32)(33,40)(34,39)(35,38)(36,37)(41,47)(42,46)(43,45)(48,50)(51,57)(52,56)(53,55)(58,60)(61,67)(62,66)(63,65)(68,70)(71,77)(72,76)(73,75)(78,80)(81,82)(83,90)(84,89)(85,88)(86,87)(91,92)(93,100)(94,99)(95,98)(96,97)(101,102)(103,110)(104,109)(105,108)(106,107)(111,112)(113,120)(114,119)(115,118)(116,117)(121,127)(122,126)(123,125)(128,130)(131,137)(132,136)(133,135)(138,140)(141,147)(142,146)(143,145)(148,150)(151,157)(152,156)(153,155)(158,160), (1,157,37,127)(2,158,38,128)(3,159,39,129)(4,160,40,130)(5,151,31,121)(6,152,32,122)(7,153,33,123)(8,154,34,124)(9,155,35,125)(10,156,36,126)(11,141,21,131)(12,142,22,132)(13,143,23,133)(14,144,24,134)(15,145,25,135)(16,146,26,136)(17,147,27,137)(18,148,28,138)(19,149,29,139)(20,150,30,140)(41,91,71,101)(42,92,72,102)(43,93,73,103)(44,94,74,104)(45,95,75,105)(46,96,76,106)(47,97,77,107)(48,98,78,108)(49,99,79,109)(50,100,80,110)(51,81,61,111)(52,82,62,112)(53,83,63,113)(54,84,64,114)(55,85,65,115)(56,86,66,116)(57,87,67,117)(58,88,68,118)(59,89,69,119)(60,90,70,120) );
G=PermutationGroup([[(1,92,17,82),(2,93,18,83),(3,94,19,84),(4,95,20,85),(5,96,11,86),(6,97,12,87),(7,98,13,88),(8,99,14,89),(9,100,15,90),(10,91,16,81),(21,116,31,106),(22,117,32,107),(23,118,33,108),(24,119,34,109),(25,120,35,110),(26,111,36,101),(27,112,37,102),(28,113,38,103),(29,114,39,104),(30,115,40,105),(41,136,51,126),(42,137,52,127),(43,138,53,128),(44,139,54,129),(45,140,55,130),(46,131,56,121),(47,132,57,122),(48,133,58,123),(49,134,59,124),(50,135,60,125),(61,156,71,146),(62,157,72,147),(63,158,73,148),(64,159,74,149),(65,160,75,150),(66,151,76,141),(67,152,77,142),(68,153,78,143),(69,154,79,144),(70,155,80,145)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,12),(13,20),(14,19),(15,18),(16,17),(21,22),(23,30),(24,29),(25,28),(26,27),(31,32),(33,40),(34,39),(35,38),(36,37),(41,47),(42,46),(43,45),(48,50),(51,57),(52,56),(53,55),(58,60),(61,67),(62,66),(63,65),(68,70),(71,77),(72,76),(73,75),(78,80),(81,82),(83,90),(84,89),(85,88),(86,87),(91,92),(93,100),(94,99),(95,98),(96,97),(101,102),(103,110),(104,109),(105,108),(106,107),(111,112),(113,120),(114,119),(115,118),(116,117),(121,127),(122,126),(123,125),(128,130),(131,137),(132,136),(133,135),(138,140),(141,147),(142,146),(143,145),(148,150),(151,157),(152,156),(153,155),(158,160)], [(1,157,37,127),(2,158,38,128),(3,159,39,129),(4,160,40,130),(5,151,31,121),(6,152,32,122),(7,153,33,123),(8,154,34,124),(9,155,35,125),(10,156,36,126),(11,141,21,131),(12,142,22,132),(13,143,23,133),(14,144,24,134),(15,145,25,135),(16,146,26,136),(17,147,27,137),(18,148,28,138),(19,149,29,139),(20,150,30,140),(41,91,71,101),(42,92,72,102),(43,93,73,103),(44,94,74,104),(45,95,75,105),(46,96,76,106),(47,97,77,107),(48,98,78,108),(49,99,79,109),(50,100,80,110),(51,81,61,111),(52,82,62,112),(53,83,63,113),(54,84,64,114),(55,85,65,115),(56,86,66,116),(57,87,67,117),(58,88,68,118),(59,89,69,119),(60,90,70,120)]])
104 conjugacy classes
| class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | ··· | 4P | 4Q | ··· | 4AB | 5A | 5B | 10A | ··· | 10N | 20A | ··· | 20AV |
| order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
| size | 1 | 1 | ··· | 1 | 10 | 10 | 10 | 10 | 1 | ··· | 1 | 2 | ··· | 2 | 10 | ··· | 10 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
104 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + | + | + | + | ||||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | D4 | D5 | C4○D4 | D10 | C4×D5 | D20 | C5⋊D4 | C4○D20 |
| kernel | C4×D10⋊C4 | C10.10C42 | C2×C4×Dic5 | C2×D10⋊C4 | C2×C4×C20 | D5×C22×C4 | D10⋊C4 | C2×C4×D5 | C2×C20 | C2×C42 | C2×C10 | C22×C4 | C2×C4 | C2×C4 | C2×C4 | C22 |
| # reps | 1 | 2 | 1 | 2 | 1 | 1 | 16 | 8 | 4 | 2 | 4 | 6 | 24 | 8 | 8 | 16 |
Matrix representation of C4×D10⋊C4 ►in GL5(𝔽41)
| 40 | 0 | 0 | 0 | 0 |
| 0 | 9 | 0 | 0 | 0 |
| 0 | 0 | 9 | 0 | 0 |
| 0 | 0 | 0 | 9 | 0 |
| 0 | 0 | 0 | 0 | 9 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 40 | 6 | 0 | 0 |
| 0 | 35 | 35 | 0 | 0 |
| 0 | 0 | 0 | 7 | 35 |
| 0 | 0 | 0 | 7 | 0 |
| 40 | 0 | 0 | 0 | 0 |
| 0 | 40 | 6 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 40 | 1 |
| 0 | 0 | 0 | 0 | 1 |
| 9 | 0 | 0 | 0 | 0 |
| 0 | 9 | 0 | 0 | 0 |
| 0 | 0 | 9 | 0 | 0 |
| 0 | 0 | 0 | 24 | 35 |
| 0 | 0 | 0 | 7 | 17 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[1,0,0,0,0,0,40,35,0,0,0,6,35,0,0,0,0,0,7,7,0,0,0,35,0],[40,0,0,0,0,0,40,0,0,0,0,6,1,0,0,0,0,0,40,0,0,0,0,1,1],[9,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,24,7,0,0,0,35,17] >;
C4×D10⋊C4 in GAP, Magma, Sage, TeX
C_4\times D_{10}\rtimes C_4 % in TeX
G:=Group("C4xD10:C4"); // GroupNames label
G:=SmallGroup(320,565);
// by ID
G=gap.SmallGroup(320,565);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,758,58,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^10=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d^-1=b^5*c>;
// generators/relations