Copied to
clipboard

G = D10.12SD16order 320 = 26·5

2nd non-split extension by D10 of SD16 acting via SD16/D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D10.12SD16, C4.Q86D5, C4⋊C4.36D10, (C2×C8).137D10, C2.22(D5×SD16), C20.27(C4○D4), C4.72(C4○D20), C10.Q1615C2, D102Q8.5C2, C20.Q816C2, (C2×Dic5).48D4, C10.38(C2×SD16), C22.214(D4×D5), D101C8.13C2, C20.44D431C2, (C2×C20).278C23, (C2×C40).284C22, C4.24(Q82D5), (C22×D5).119D4, C53(C23.47D4), C2.23(SD16⋊D5), C10.42(C8.C22), C4⋊Dic5.110C22, (C2×Dic10).86C22, C2.11(D10.13D4), C10.41(C22.D4), (D5×C4⋊C4).6C2, (C5×C4.Q8)⋊15C2, (C2×C4×D5).35C22, (C2×C10).283(C2×D4), (C5×C4⋊C4).71C22, (C2×C52C8).56C22, (C2×C4).381(C22×D5), SmallGroup(320,489)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D10.12SD16
C1C5C10C2×C10C2×C20C2×C4×D5D5×C4⋊C4 — D10.12SD16
C5C10C2×C20 — D10.12SD16
C1C22C2×C4C4.Q8

Generators and relations for D10.12SD16
 G = < a,b,c,d | a10=b2=c8=1, d2=a5, bab=a-1, ac=ca, ad=da, cbc-1=a5b, bd=db, dcd-1=c3 >

Subgroups: 430 in 104 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, Q8, C23, D5, C10, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×Q8, Dic5, C20, C20, D10, D10, C2×C10, C22⋊C8, Q8⋊C4, C4.Q8, C4.Q8, C2×C4⋊C4, C22⋊Q8, C52C8, C40, Dic10, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C23.47D4, C2×C52C8, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C5×C4⋊C4, C2×C40, C2×Dic10, C2×C4×D5, C2×C4×D5, C20.Q8, C10.Q16, C20.44D4, D101C8, C5×C4.Q8, D5×C4⋊C4, D102Q8, D10.12SD16
Quotients: C1, C2, C22, D4, C23, D5, SD16, C2×D4, C4○D4, D10, C22.D4, C2×SD16, C8.C22, C22×D5, C23.47D4, C4○D20, D4×D5, Q82D5, D10.13D4, D5×SD16, SD16⋊D5, D10.12SD16

Smallest permutation representation of D10.12SD16
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 32)(2 31)(3 40)(4 39)(5 38)(6 37)(7 36)(8 35)(9 34)(10 33)(11 43)(12 42)(13 41)(14 50)(15 49)(16 48)(17 47)(18 46)(19 45)(20 44)(21 134)(22 133)(23 132)(24 131)(25 140)(26 139)(27 138)(28 137)(29 136)(30 135)(51 88)(52 87)(53 86)(54 85)(55 84)(56 83)(57 82)(58 81)(59 90)(60 89)(61 77)(62 76)(63 75)(64 74)(65 73)(66 72)(67 71)(68 80)(69 79)(70 78)(91 123)(92 122)(93 121)(94 130)(95 129)(96 128)(97 127)(98 126)(99 125)(100 124)(101 112)(102 111)(103 120)(104 119)(105 118)(106 117)(107 116)(108 115)(109 114)(110 113)(141 157)(142 156)(143 155)(144 154)(145 153)(146 152)(147 151)(148 160)(149 159)(150 158)
(1 90 50 73 33 55 15 61)(2 81 41 74 34 56 16 62)(3 82 42 75 35 57 17 63)(4 83 43 76 36 58 18 64)(5 84 44 77 37 59 19 65)(6 85 45 78 38 60 20 66)(7 86 46 79 39 51 11 67)(8 87 47 80 40 52 12 68)(9 88 48 71 31 53 13 69)(10 89 49 72 32 54 14 70)(21 118 146 125 140 106 158 100)(22 119 147 126 131 107 159 91)(23 120 148 127 132 108 160 92)(24 111 149 128 133 109 151 93)(25 112 150 129 134 110 152 94)(26 113 141 130 135 101 153 95)(27 114 142 121 136 102 154 96)(28 115 143 122 137 103 155 97)(29 116 144 123 138 104 156 98)(30 117 145 124 139 105 157 99)
(1 106 6 101)(2 107 7 102)(3 108 8 103)(4 109 9 104)(5 110 10 105)(11 96 16 91)(12 97 17 92)(13 98 18 93)(14 99 19 94)(15 100 20 95)(21 85 26 90)(22 86 27 81)(23 87 28 82)(24 88 29 83)(25 89 30 84)(31 116 36 111)(32 117 37 112)(33 118 38 113)(34 119 39 114)(35 120 40 115)(41 126 46 121)(42 127 47 122)(43 128 48 123)(44 129 49 124)(45 130 50 125)(51 136 56 131)(52 137 57 132)(53 138 58 133)(54 139 59 134)(55 140 60 135)(61 146 66 141)(62 147 67 142)(63 148 68 143)(64 149 69 144)(65 150 70 145)(71 156 76 151)(72 157 77 152)(73 158 78 153)(74 159 79 154)(75 160 80 155)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,32)(2,31)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,43)(12,42)(13,41)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,134)(22,133)(23,132)(24,131)(25,140)(26,139)(27,138)(28,137)(29,136)(30,135)(51,88)(52,87)(53,86)(54,85)(55,84)(56,83)(57,82)(58,81)(59,90)(60,89)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,80)(69,79)(70,78)(91,123)(92,122)(93,121)(94,130)(95,129)(96,128)(97,127)(98,126)(99,125)(100,124)(101,112)(102,111)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(141,157)(142,156)(143,155)(144,154)(145,153)(146,152)(147,151)(148,160)(149,159)(150,158), (1,90,50,73,33,55,15,61)(2,81,41,74,34,56,16,62)(3,82,42,75,35,57,17,63)(4,83,43,76,36,58,18,64)(5,84,44,77,37,59,19,65)(6,85,45,78,38,60,20,66)(7,86,46,79,39,51,11,67)(8,87,47,80,40,52,12,68)(9,88,48,71,31,53,13,69)(10,89,49,72,32,54,14,70)(21,118,146,125,140,106,158,100)(22,119,147,126,131,107,159,91)(23,120,148,127,132,108,160,92)(24,111,149,128,133,109,151,93)(25,112,150,129,134,110,152,94)(26,113,141,130,135,101,153,95)(27,114,142,121,136,102,154,96)(28,115,143,122,137,103,155,97)(29,116,144,123,138,104,156,98)(30,117,145,124,139,105,157,99), (1,106,6,101)(2,107,7,102)(3,108,8,103)(4,109,9,104)(5,110,10,105)(11,96,16,91)(12,97,17,92)(13,98,18,93)(14,99,19,94)(15,100,20,95)(21,85,26,90)(22,86,27,81)(23,87,28,82)(24,88,29,83)(25,89,30,84)(31,116,36,111)(32,117,37,112)(33,118,38,113)(34,119,39,114)(35,120,40,115)(41,126,46,121)(42,127,47,122)(43,128,48,123)(44,129,49,124)(45,130,50,125)(51,136,56,131)(52,137,57,132)(53,138,58,133)(54,139,59,134)(55,140,60,135)(61,146,66,141)(62,147,67,142)(63,148,68,143)(64,149,69,144)(65,150,70,145)(71,156,76,151)(72,157,77,152)(73,158,78,153)(74,159,79,154)(75,160,80,155)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,32)(2,31)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,43)(12,42)(13,41)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,134)(22,133)(23,132)(24,131)(25,140)(26,139)(27,138)(28,137)(29,136)(30,135)(51,88)(52,87)(53,86)(54,85)(55,84)(56,83)(57,82)(58,81)(59,90)(60,89)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,80)(69,79)(70,78)(91,123)(92,122)(93,121)(94,130)(95,129)(96,128)(97,127)(98,126)(99,125)(100,124)(101,112)(102,111)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(141,157)(142,156)(143,155)(144,154)(145,153)(146,152)(147,151)(148,160)(149,159)(150,158), (1,90,50,73,33,55,15,61)(2,81,41,74,34,56,16,62)(3,82,42,75,35,57,17,63)(4,83,43,76,36,58,18,64)(5,84,44,77,37,59,19,65)(6,85,45,78,38,60,20,66)(7,86,46,79,39,51,11,67)(8,87,47,80,40,52,12,68)(9,88,48,71,31,53,13,69)(10,89,49,72,32,54,14,70)(21,118,146,125,140,106,158,100)(22,119,147,126,131,107,159,91)(23,120,148,127,132,108,160,92)(24,111,149,128,133,109,151,93)(25,112,150,129,134,110,152,94)(26,113,141,130,135,101,153,95)(27,114,142,121,136,102,154,96)(28,115,143,122,137,103,155,97)(29,116,144,123,138,104,156,98)(30,117,145,124,139,105,157,99), (1,106,6,101)(2,107,7,102)(3,108,8,103)(4,109,9,104)(5,110,10,105)(11,96,16,91)(12,97,17,92)(13,98,18,93)(14,99,19,94)(15,100,20,95)(21,85,26,90)(22,86,27,81)(23,87,28,82)(24,88,29,83)(25,89,30,84)(31,116,36,111)(32,117,37,112)(33,118,38,113)(34,119,39,114)(35,120,40,115)(41,126,46,121)(42,127,47,122)(43,128,48,123)(44,129,49,124)(45,130,50,125)(51,136,56,131)(52,137,57,132)(53,138,58,133)(54,139,59,134)(55,140,60,135)(61,146,66,141)(62,147,67,142)(63,148,68,143)(64,149,69,144)(65,150,70,145)(71,156,76,151)(72,157,77,152)(73,158,78,153)(74,159,79,154)(75,160,80,155) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,32),(2,31),(3,40),(4,39),(5,38),(6,37),(7,36),(8,35),(9,34),(10,33),(11,43),(12,42),(13,41),(14,50),(15,49),(16,48),(17,47),(18,46),(19,45),(20,44),(21,134),(22,133),(23,132),(24,131),(25,140),(26,139),(27,138),(28,137),(29,136),(30,135),(51,88),(52,87),(53,86),(54,85),(55,84),(56,83),(57,82),(58,81),(59,90),(60,89),(61,77),(62,76),(63,75),(64,74),(65,73),(66,72),(67,71),(68,80),(69,79),(70,78),(91,123),(92,122),(93,121),(94,130),(95,129),(96,128),(97,127),(98,126),(99,125),(100,124),(101,112),(102,111),(103,120),(104,119),(105,118),(106,117),(107,116),(108,115),(109,114),(110,113),(141,157),(142,156),(143,155),(144,154),(145,153),(146,152),(147,151),(148,160),(149,159),(150,158)], [(1,90,50,73,33,55,15,61),(2,81,41,74,34,56,16,62),(3,82,42,75,35,57,17,63),(4,83,43,76,36,58,18,64),(5,84,44,77,37,59,19,65),(6,85,45,78,38,60,20,66),(7,86,46,79,39,51,11,67),(8,87,47,80,40,52,12,68),(9,88,48,71,31,53,13,69),(10,89,49,72,32,54,14,70),(21,118,146,125,140,106,158,100),(22,119,147,126,131,107,159,91),(23,120,148,127,132,108,160,92),(24,111,149,128,133,109,151,93),(25,112,150,129,134,110,152,94),(26,113,141,130,135,101,153,95),(27,114,142,121,136,102,154,96),(28,115,143,122,137,103,155,97),(29,116,144,123,138,104,156,98),(30,117,145,124,139,105,157,99)], [(1,106,6,101),(2,107,7,102),(3,108,8,103),(4,109,9,104),(5,110,10,105),(11,96,16,91),(12,97,17,92),(13,98,18,93),(14,99,19,94),(15,100,20,95),(21,85,26,90),(22,86,27,81),(23,87,28,82),(24,88,29,83),(25,89,30,84),(31,116,36,111),(32,117,37,112),(33,118,38,113),(34,119,39,114),(35,120,40,115),(41,126,46,121),(42,127,47,122),(43,128,48,123),(44,129,49,124),(45,130,50,125),(51,136,56,131),(52,137,57,132),(53,138,58,133),(54,139,59,134),(55,140,60,135),(61,146,66,141),(62,147,67,142),(63,148,68,143),(64,149,69,144),(65,150,70,145),(71,156,76,151),(72,157,77,152),(73,158,78,153),(74,159,79,154),(75,160,80,155)]])

47 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D10A···10F20A20B20C20D20E···20L40A···40H
order12222244444444455888810···102020202020···2040···40
size111110102244820202040224420202···244448···84···4

47 irreducible representations

dim111111112222222244444
type+++++++++++++-++-
imageC1C2C2C2C2C2C2C2D4D4D5C4○D4SD16D10D10C4○D20C8.C22Q82D5D4×D5D5×SD16SD16⋊D5
kernelD10.12SD16C20.Q8C10.Q16C20.44D4D101C8C5×C4.Q8D5×C4⋊C4D102Q8C2×Dic5C22×D5C4.Q8C20D10C4⋊C4C2×C8C4C10C4C22C2C2
# reps111111111124442812244

Matrix representation of D10.12SD16 in GL4(𝔽41) generated by

1000
0100
00134
00734
,
40000
04000
0010
00740
,
152600
151500
00171
004024
,
173200
322400
0090
0009
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,1,7,0,0,34,34],[40,0,0,0,0,40,0,0,0,0,1,7,0,0,0,40],[15,15,0,0,26,15,0,0,0,0,17,40,0,0,1,24],[17,32,0,0,32,24,0,0,0,0,9,0,0,0,0,9] >;

D10.12SD16 in GAP, Magma, Sage, TeX

D_{10}._{12}{\rm SD}_{16}
% in TeX

G:=Group("D10.12SD16");
// GroupNames label

G:=SmallGroup(320,489);
// by ID

G=gap.SmallGroup(320,489);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,64,254,219,100,851,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^8=1,d^2=a^5,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^5*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽