Copied to
clipboard

G = D40.C4order 320 = 26·5

1st non-split extension by D40 of C4 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8.2F5, D40.1C4, Dic5.2D8, D10.13SD16, C8.2(C2×F5), C40.2(C2×C4), C5⋊(M5(2)⋊C2), (C5×D8).1C4, (D5×D8).2C2, (C4×D5).23D4, C52C8.14D4, C40.C41C2, C8.F52C2, C4.4(C22⋊F5), C20.4(C22⋊C4), C2.9(D20⋊C4), (C8×D5).10C22, C10.8(D4⋊C4), SmallGroup(320,244)

Series: Derived Chief Lower central Upper central

C1C40 — D40.C4
C1C5C10C20C4×D5C8×D5C40.C4 — D40.C4
C5C10C20C40 — D40.C4
C1C2C4C8D8

Generators and relations for D40.C4
 G = < a,b,c | a40=b2=1, c4=a20, bab=a-1, cac-1=a3, cbc-1=a37b >

Subgroups: 410 in 62 conjugacy classes, 20 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, D4, C23, D5, C10, C10, C16, C2×C8, M4(2), D8, D8, C2×D4, Dic5, C20, D10, D10, C2×C10, C8.C4, M5(2), C2×D8, C52C8, C40, C5⋊C8, C4×D5, D20, C5⋊D4, C5×D4, C22×D5, M5(2)⋊C2, C5⋊C16, C8×D5, D40, D4⋊D5, C5×D8, C4.F5, D4×D5, C8.F5, C40.C4, D5×D8, D40.C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, D8, SD16, F5, D4⋊C4, C2×F5, M5(2)⋊C2, C22⋊F5, D20⋊C4, D40.C4

Character table of D40.C4

 class 12A2B2C2D4A4B58A8B8C8D8E10A10B10C16A16B16C16D2040A40B
 size 118104021044101040404161620202020888
ρ111111111111111111111111    trivial
ρ211-11-1111111111-1-1-1-1-1-1111    linear of order 2
ρ311111111111-1-1111-1-1-1-1111    linear of order 2
ρ411-11-1111111-1-11-1-11111111    linear of order 2
ρ5111-1-11-111-1-1-ii111-iii-i111    linear of order 4
ρ611-1-111-111-1-1-ii1-1-1i-i-ii111    linear of order 4
ρ7111-1-11-111-1-1i-i111i-i-ii111    linear of order 4
ρ811-1-111-111-1-1i-i1-1-1-iii-i111    linear of order 4
ρ922020222-2-2-20020000002-2-2    orthogonal lifted from D4
ρ10220-202-22-2220020000002-2-2    orthogonal lifted from D4
ρ11220-20-222000002002-22-2-200    orthogonal lifted from D8
ρ12220-20-22200000200-22-22-200    orthogonal lifted from D8
ρ1322020-2-2200000200-2-2--2--2-200    complex lifted from SD16
ρ1422020-2-2200000200--2--2-2-2-200    complex lifted from SD16
ρ154440040-140000-1-1-10000-1-1-1    orthogonal lifted from F5
ρ1644-40040-140000-1110000-1-1-1    orthogonal lifted from C2×F5
ρ174400040-1-40000-1-550000-111    orthogonal lifted from C22⋊F5
ρ184400040-1-40000-15-50000-111    orthogonal lifted from C22⋊F5
ρ194-4000004022-2200-4000000000    orthogonal lifted from M5(2)⋊C2
ρ204-40000040-222200-4000000000    orthogonal lifted from M5(2)⋊C2
ρ2188000-80-200000-2000000200    orthogonal lifted from D20⋊C4, Schur index 2
ρ228-800000-20000020000000-1010    orthogonal faithful, Schur index 2
ρ238-800000-2000002000000010-10    orthogonal faithful, Schur index 2

Smallest permutation representation of D40.C4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 40)(12 39)(13 38)(14 37)(15 36)(16 35)(17 34)(18 33)(19 32)(20 31)(21 30)(22 29)(23 28)(24 27)(25 26)(41 77)(42 76)(43 75)(44 74)(45 73)(46 72)(47 71)(48 70)(49 69)(50 68)(51 67)(52 66)(53 65)(54 64)(55 63)(56 62)(57 61)(58 60)(78 80)
(1 57 11 47 21 77 31 67)(2 44 20 50 22 64 40 70)(3 71 29 53 23 51 9 73)(4 58 38 56 24 78 18 76)(5 45 7 59 25 65 27 79)(6 72 16 62 26 52 36 42)(8 46 34 68 28 66 14 48)(10 60 12 74 30 80 32 54)(13 61 39 43 33 41 19 63)(15 75 17 49 35 55 37 69)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(21,30)(22,29)(23,28)(24,27)(25,26)(41,77)(42,76)(43,75)(44,74)(45,73)(46,72)(47,71)(48,70)(49,69)(50,68)(51,67)(52,66)(53,65)(54,64)(55,63)(56,62)(57,61)(58,60)(78,80), (1,57,11,47,21,77,31,67)(2,44,20,50,22,64,40,70)(3,71,29,53,23,51,9,73)(4,58,38,56,24,78,18,76)(5,45,7,59,25,65,27,79)(6,72,16,62,26,52,36,42)(8,46,34,68,28,66,14,48)(10,60,12,74,30,80,32,54)(13,61,39,43,33,41,19,63)(15,75,17,49,35,55,37,69)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(21,30)(22,29)(23,28)(24,27)(25,26)(41,77)(42,76)(43,75)(44,74)(45,73)(46,72)(47,71)(48,70)(49,69)(50,68)(51,67)(52,66)(53,65)(54,64)(55,63)(56,62)(57,61)(58,60)(78,80), (1,57,11,47,21,77,31,67)(2,44,20,50,22,64,40,70)(3,71,29,53,23,51,9,73)(4,58,38,56,24,78,18,76)(5,45,7,59,25,65,27,79)(6,72,16,62,26,52,36,42)(8,46,34,68,28,66,14,48)(10,60,12,74,30,80,32,54)(13,61,39,43,33,41,19,63)(15,75,17,49,35,55,37,69) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,40),(12,39),(13,38),(14,37),(15,36),(16,35),(17,34),(18,33),(19,32),(20,31),(21,30),(22,29),(23,28),(24,27),(25,26),(41,77),(42,76),(43,75),(44,74),(45,73),(46,72),(47,71),(48,70),(49,69),(50,68),(51,67),(52,66),(53,65),(54,64),(55,63),(56,62),(57,61),(58,60),(78,80)], [(1,57,11,47,21,77,31,67),(2,44,20,50,22,64,40,70),(3,71,29,53,23,51,9,73),(4,58,38,56,24,78,18,76),(5,45,7,59,25,65,27,79),(6,72,16,62,26,52,36,42),(8,46,34,68,28,66,14,48),(10,60,12,74,30,80,32,54),(13,61,39,43,33,41,19,63),(15,75,17,49,35,55,37,69)]])

Matrix representation of D40.C4 in GL8(𝔽241)

24052000000
18952000000
01412401900000
100141511900000
000007100
00001122200
00000021971
0000001120
,
10000000
52240000000
00100000
14101902400000
0000017000
0000112000
0000001125
0000000240
,
222236166310000
222016600000
14371950000
14301900000
00000010
00000001
000024011600
000054100

G:=sub<GL(8,GF(241))| [240,189,0,100,0,0,0,0,52,52,141,141,0,0,0,0,0,0,240,51,0,0,0,0,0,0,190,190,0,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,71,22,0,0,0,0,0,0,0,0,219,112,0,0,0,0,0,0,71,0],[1,52,0,141,0,0,0,0,0,240,0,0,0,0,0,0,0,0,1,190,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,170,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,125,240],[222,222,143,143,0,0,0,0,236,0,7,0,0,0,0,0,166,166,19,19,0,0,0,0,31,0,5,0,0,0,0,0,0,0,0,0,0,0,240,54,0,0,0,0,0,0,116,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;

D40.C4 in GAP, Magma, Sage, TeX

D_{40}.C_4
% in TeX

G:=Group("D40.C4");
// GroupNames label

G:=SmallGroup(320,244);
// by ID

G=gap.SmallGroup(320,244);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,387,184,675,794,80,1684,851,102,6278,3156]);
// Polycyclic

G:=Group<a,b,c|a^40=b^2=1,c^4=a^20,b*a*b=a^-1,c*a*c^-1=a^3,c*b*c^-1=a^37*b>;
// generators/relations

Export

Character table of D40.C4 in TeX

׿
×
𝔽