Extensions 1→N→G→Q→1 with N=C4xD5 and Q=D4

Direct product G=NxQ with N=C4xD5 and Q=D4
dρLabelID
C4xD4xD580C4xD4xD5320,1216

Semidirect products G=N:Q with N=C4xD5 and Q=D4
extensionφ:Q→Out NdρLabelID
(C4xD5):1D4 = C10.382+ 1+4φ: D4/C2C22 ⊆ Out C4xD580(C4xD5):1D4320,1279
(C4xD5):2D4 = C10.392+ 1+4φ: D4/C2C22 ⊆ Out C4xD5160(C4xD5):2D4320,1280
(C4xD5):3D4 = C10.172- 1+4φ: D4/C2C22 ⊆ Out C4xD5160(C4xD5):3D4320,1301
(C4xD5):4D4 = C42:18D10φ: D4/C2C22 ⊆ Out C4xD580(C4xD5):4D4320,1346
(C4xD5):5D4 = C42:26D10φ: D4/C2C22 ⊆ Out C4xD580(C4xD5):5D4320,1387
(C4xD5):6D4 = C42.233D10φ: D4/C4C2 ⊆ Out C4xD5160(C4xD5):6D4320,1340
(C4xD5):7D4 = D5xC4:1D4φ: D4/C4C2 ⊆ Out C4xD580(C4xD5):7D4320,1386
(C4xD5):8D4 = C42.238D10φ: D4/C4C2 ⊆ Out C4xD5160(C4xD5):8D4320,1388
(C4xD5):9D4 = C42.240D10φ: D4/C4C2 ⊆ Out C4xD5160(C4xD5):9D4320,1397
(C4xD5):10D4 = C42.228D10φ: D4/C4C2 ⊆ Out C4xD5160(C4xD5):10D4320,1220
(C4xD5):11D4 = D5xC4:D4φ: D4/C22C2 ⊆ Out C4xD580(C4xD5):11D4320,1276
(C4xD5):12D4 = C4:C4:21D10φ: D4/C22C2 ⊆ Out C4xD580(C4xD5):12D4320,1278
(C4xD5):13D4 = C4:C4:26D10φ: D4/C22C2 ⊆ Out C4xD580(C4xD5):13D4320,1299
(C4xD5):14D4 = C42:12D10φ: D4/C22C2 ⊆ Out C4xD580(C4xD5):14D4320,1219

Non-split extensions G=N.Q with N=C4xD5 and Q=D4
extensionφ:Q→Out NdρLabelID
(C4xD5).1D4 = D5xC4.D4φ: D4/C2C22 ⊆ Out C4xD5408+(C4xD5).1D4320,371
(C4xD5).2D4 = D5xC4.10D4φ: D4/C2C22 ⊆ Out C4xD5808-(C4xD5).2D4320,377
(C4xD5).3D4 = (D4xD5):C4φ: D4/C2C22 ⊆ Out C4xD580(C4xD5).3D4320,397
(C4xD5).4D4 = D4:(C4xD5)φ: D4/C2C22 ⊆ Out C4xD5160(C4xD5).4D4320,398
(C4xD5).5D4 = (Q8xD5):C4φ: D4/C2C22 ⊆ Out C4xD5160(C4xD5).5D4320,429
(C4xD5).6D4 = Q8:(C4xD5)φ: D4/C2C22 ⊆ Out C4xD5160(C4xD5).6D4320,430
(C4xD5).7D4 = D16:D5φ: D4/C2C22 ⊆ Out C4xD5804(C4xD5).7D4320,538
(C4xD5).8D4 = C16:D10φ: D4/C2C22 ⊆ Out C4xD5804+(C4xD5).8D4320,541
(C4xD5).9D4 = SD32:D5φ: D4/C2C22 ⊆ Out C4xD51604-(C4xD5).9D4320,542
(C4xD5).10D4 = Q32:D5φ: D4/C2C22 ⊆ Out C4xD51604(C4xD5).10D4320,545
(C4xD5).11D4 = C10.162- 1+4φ: D4/C2C22 ⊆ Out C4xD5160(C4xD5).11D4320,1300
(C4xD5).12D4 = C42.141D10φ: D4/C2C22 ⊆ Out C4xD5160(C4xD5).12D4320,1347
(C4xD5).13D4 = C42.171D10φ: D4/C2C22 ⊆ Out C4xD5160(C4xD5).13D4320,1396
(C4xD5).14D4 = C2xD8:D5φ: D4/C2C22 ⊆ Out C4xD580(C4xD5).14D4320,1427
(C4xD5).15D4 = C2xD40:C2φ: D4/C2C22 ⊆ Out C4xD580(C4xD5).15D4320,1431
(C4xD5).16D4 = C2xSD16:D5φ: D4/C2C22 ⊆ Out C4xD5160(C4xD5).16D4320,1432
(C4xD5).17D4 = C2xQ16:D5φ: D4/C2C22 ⊆ Out C4xD5160(C4xD5).17D4320,1436
(C4xD5).18D4 = D10.18D8φ: D4/C2C22 ⊆ Out C4xD580(C4xD5).18D4320,212
(C4xD5).19D4 = C20.C42φ: D4/C2C22 ⊆ Out C4xD580(C4xD5).19D4320,213
(C4xD5).20D4 = D10.D8φ: D4/C2C22 ⊆ Out C4xD5808-(C4xD5).20D4320,241
(C4xD5).21D4 = D5.D16φ: D4/C2C22 ⊆ Out C4xD5808+(C4xD5).21D4320,242
(C4xD5).22D4 = D8.F5φ: D4/C2C22 ⊆ Out C4xD51608-(C4xD5).22D4320,243
(C4xD5).23D4 = D40.C4φ: D4/C2C22 ⊆ Out C4xD5808+(C4xD5).23D4320,244
(C4xD5).24D4 = D40:1C4φ: D4/C2C22 ⊆ Out C4xD5808+(C4xD5).24D4320,245
(C4xD5).25D4 = D5.Q32φ: D4/C2C22 ⊆ Out C4xD5808-(C4xD5).25D4320,246
(C4xD5).26D4 = Q16.F5φ: D4/C2C22 ⊆ Out C4xD51608+(C4xD5).26D4320,247
(C4xD5).27D4 = Dic20.C4φ: D4/C2C22 ⊆ Out C4xD51608-(C4xD5).27D4320,248
(C4xD5).28D4 = C4:C4.9F5φ: D4/C2C22 ⊆ Out C4xD5160(C4xD5).28D4320,1046
(C4xD5).29D4 = C20:(C4:C4)φ: D4/C2C22 ⊆ Out C4xD580(C4xD5).29D4320,1050
(C4xD5).30D4 = M4(2):1F5φ: D4/C2C22 ⊆ Out C4xD5408(C4xD5).30D4320,1065
(C4xD5).31D4 = M4(2).1F5φ: D4/C2C22 ⊆ Out C4xD5808(C4xD5).31D4320,1067
(C4xD5).32D4 = C2xD20:C4φ: D4/C2C22 ⊆ Out C4xD580(C4xD5).32D4320,1104
(C4xD5).33D4 = (D4xC10):C4φ: D4/C2C22 ⊆ Out C4xD5408+(C4xD5).33D4320,1105
(C4xD5).34D4 = C2xD4:F5φ: D4/C2C22 ⊆ Out C4xD580(C4xD5).34D4320,1106
(C4xD5).35D4 = (C2xD4):6F5φ: D4/C2C22 ⊆ Out C4xD5808-(C4xD5).35D4320,1107
(C4xD5).36D4 = (C2xD4):8F5φ: D4/C2C22 ⊆ Out C4xD5808-(C4xD5).36D4320,1109
(C4xD5).37D4 = (C2xD4).8F5φ: D4/C2C22 ⊆ Out C4xD5160(C4xD5).37D4320,1114
(C4xD5).38D4 = D5:(C4.D4)φ: D4/C2C22 ⊆ Out C4xD5408+(C4xD5).38D4320,1116
(C4xD5).39D4 = C2.(D4xF5)φ: D4/C2C22 ⊆ Out C4xD580(C4xD5).39D4320,1118
(C4xD5).40D4 = C2xQ8:F5φ: D4/C2C22 ⊆ Out C4xD580(C4xD5).40D4320,1119
(C4xD5).41D4 = (C2xQ8):4F5φ: D4/C2C22 ⊆ Out C4xD5808-(C4xD5).41D4320,1120
(C4xD5).42D4 = C2xQ8:2F5φ: D4/C2C22 ⊆ Out C4xD580(C4xD5).42D4320,1121
(C4xD5).43D4 = (C2xQ8):6F5φ: D4/C2C22 ⊆ Out C4xD5808+(C4xD5).43D4320,1122
(C4xD5).44D4 = (C2xQ8):7F5φ: D4/C2C22 ⊆ Out C4xD5808+(C4xD5).44D4320,1123
(C4xD5).45D4 = (C2xQ8).5F5φ: D4/C2C22 ⊆ Out C4xD5160(C4xD5).45D4320,1125
(C4xD5).46D4 = (C2xQ8).7F5φ: D4/C2C22 ⊆ Out C4xD5808-(C4xD5).46D4320,1127
(C4xD5).47D4 = (C2xF5):Q8φ: D4/C2C22 ⊆ Out C4xD580(C4xD5).47D4320,1128
(C4xD5).48D4 = C80:4C4φ: D4/C2C22 ⊆ Out C4xD5804(C4xD5).48D4320,185
(C4xD5).49D4 = C80:5C4φ: D4/C2C22 ⊆ Out C4xD5804(C4xD5).49D4320,186
(C4xD5).50D4 = C42:3F5φ: D4/C2C22 ⊆ Out C4xD5804(C4xD5).50D4320,201
(C4xD5).51D4 = C20.24C42φ: D4/C2C22 ⊆ Out C4xD5804(C4xD5).51D4320,233
(C4xD5).52D4 = C20.25C42φ: D4/C2C22 ⊆ Out C4xD5804(C4xD5).52D4320,235
(C4xD5).53D4 = C23:F5:5C2φ: D4/C2C22 ⊆ Out C4xD5804(C4xD5).53D4320,1083
(C4xD5).54D4 = (C4xD5).D4φ: D4/C2C22 ⊆ Out C4xD5804(C4xD5).54D4320,1099
(C4xD5).55D4 = (C2xC8):F5φ: D4/C2C22 ⊆ Out C4xD5804(C4xD5).55D4320,232
(C4xD5).56D4 = C4oD20:C4φ: D4/C2C22 ⊆ Out C4xD5808(C4xD5).56D4320,1132
(C4xD5).57D4 = D5xD16φ: D4/C4C2 ⊆ Out C4xD5804+(C4xD5).57D4320,537
(C4xD5).58D4 = D16:3D5φ: D4/C4C2 ⊆ Out C4xD51604-(C4xD5).58D4320,539
(C4xD5).59D4 = D5xSD32φ: D4/C4C2 ⊆ Out C4xD5804(C4xD5).59D4320,540
(C4xD5).60D4 = SD32:3D5φ: D4/C4C2 ⊆ Out C4xD51604(C4xD5).60D4320,543
(C4xD5).61D4 = D5xQ32φ: D4/C4C2 ⊆ Out C4xD51604-(C4xD5).61D4320,544
(C4xD5).62D4 = D80:5C2φ: D4/C4C2 ⊆ Out C4xD51604+(C4xD5).62D4320,546
(C4xD5).63D4 = D5xC4.4D4φ: D4/C4C2 ⊆ Out C4xD580(C4xD5).63D4320,1345
(C4xD5).64D4 = D5xC4:Q8φ: D4/C4C2 ⊆ Out C4xD5160(C4xD5).64D4320,1395
(C4xD5).65D4 = C2xD5xD8φ: D4/C4C2 ⊆ Out C4xD580(C4xD5).65D4320,1426
(C4xD5).66D4 = C2xD8:3D5φ: D4/C4C2 ⊆ Out C4xD5160(C4xD5).66D4320,1428
(C4xD5).67D4 = C2xD5xSD16φ: D4/C4C2 ⊆ Out C4xD580(C4xD5).67D4320,1430
(C4xD5).68D4 = C2xSD16:3D5φ: D4/C4C2 ⊆ Out C4xD5160(C4xD5).68D4320,1433
(C4xD5).69D4 = C2xD5xQ16φ: D4/C4C2 ⊆ Out C4xD5160(C4xD5).69D4320,1435
(C4xD5).70D4 = C2xQ8.D10φ: D4/C4C2 ⊆ Out C4xD5160(C4xD5).70D4320,1437
(C4xD5).71D4 = D5xC4wrC2φ: D4/C4C2 ⊆ Out C4xD5404(C4xD5).71D4320,447
(C4xD5).72D4 = C20:5M4(2)φ: D4/C4C2 ⊆ Out C4xD5160(C4xD5).72D4320,464
(C4xD5).73D4 = D5xC8.C4φ: D4/C4C2 ⊆ Out C4xD5804(C4xD5).73D4320,519
(C4xD5).74D4 = C80:2C4φ: D4/C4C2 ⊆ Out C4xD5804(C4xD5).74D4320,187
(C4xD5).75D4 = C80:3C4φ: D4/C4C2 ⊆ Out C4xD5804(C4xD5).75D4320,188
(C4xD5).76D4 = C16.F5φ: D4/C4C2 ⊆ Out C4xD51604(C4xD5).76D4320,189
(C4xD5).77D4 = C80.2C4φ: D4/C4C2 ⊆ Out C4xD51604(C4xD5).77D4320,190
(C4xD5).78D4 = C20:3M4(2)φ: D4/C4C2 ⊆ Out C4xD5160(C4xD5).78D4320,1019
(C4xD5).79D4 = C42.14F5φ: D4/C4C2 ⊆ Out C4xD5160(C4xD5).79D4320,1020
(C4xD5).80D4 = C42:8F5φ: D4/C4C2 ⊆ Out C4xD580(C4xD5).80D4320,1026
(C4xD5).81D4 = C42:9F5φ: D4/C4C2 ⊆ Out C4xD580(C4xD5).81D4320,1027
(C4xD5).82D4 = C2xC40:C4φ: D4/C4C2 ⊆ Out C4xD580(C4xD5).82D4320,1057
(C4xD5).83D4 = C2xD5.D8φ: D4/C4C2 ⊆ Out C4xD580(C4xD5).83D4320,1058
(C4xD5).84D4 = C2xC40.C4φ: D4/C4C2 ⊆ Out C4xD5160(C4xD5).84D4320,1060
(C4xD5).85D4 = C2xD10.Q8φ: D4/C4C2 ⊆ Out C4xD5160(C4xD5).85D4320,1061
(C4xD5).86D4 = C42:6F5φ: D4/C4C2 ⊆ Out C4xD5404(C4xD5).86D4320,200
(C4xD5).87D4 = C42.11F5φ: D4/C4C2 ⊆ Out C4xD5160(C4xD5).87D4320,1017
(C4xD5).88D4 = C4xC4:F5φ: D4/C4C2 ⊆ Out C4xD580(C4xD5).88D4320,1025
(C4xD5).89D4 = (C2xC8):6F5φ: D4/C4C2 ⊆ Out C4xD5804(C4xD5).89D4320,1059
(C4xD5).90D4 = (C8xD5).C4φ: D4/C4C2 ⊆ Out C4xD5804(C4xD5).90D4320,1062
(C4xD5).91D4 = M4(2).19D10φ: D4/C22C2 ⊆ Out C4xD5808-(C4xD5).91D4320,372
(C4xD5).92D4 = M4(2).21D10φ: D4/C22C2 ⊆ Out C4xD5808+(C4xD5).92D4320,378
(C4xD5).93D4 = D5xD4:C4φ: D4/C22C2 ⊆ Out C4xD580(C4xD5).93D4320,396
(C4xD5).94D4 = D4:2D5:C4φ: D4/C22C2 ⊆ Out C4xD5160(C4xD5).94D4320,399
(C4xD5).95D4 = D5xQ8:C4φ: D4/C22C2 ⊆ Out C4xD5160(C4xD5).95D4320,428
(C4xD5).96D4 = Q8:2D5:C4φ: D4/C22C2 ⊆ Out C4xD5160(C4xD5).96D4320,431
(C4xD5).97D4 = D5xC22:Q8φ: D4/C22C2 ⊆ Out C4xD580(C4xD5).97D4320,1298
(C4xD5).98D4 = D5xC8:C22φ: D4/C22C2 ⊆ Out C4xD5408+(C4xD5).98D4320,1444
(C4xD5).99D4 = SD16:D10φ: D4/C22C2 ⊆ Out C4xD5808-(C4xD5).99D4320,1445
(C4xD5).100D4 = D5xC8.C22φ: D4/C22C2 ⊆ Out C4xD5808-(C4xD5).100D4320,1448
(C4xD5).101D4 = D40:C22φ: D4/C22C2 ⊆ Out C4xD5808+(C4xD5).101D4320,1449
(C4xD5).102D4 = D10:7M4(2)φ: D4/C22C2 ⊆ Out C4xD580(C4xD5).102D4320,353
(C4xD5).103D4 = C22:C8:D5φ: D4/C22C2 ⊆ Out C4xD5160(C4xD5).103D4320,354
(C4xD5).104D4 = C42:D10φ: D4/C22C2 ⊆ Out C4xD5804(C4xD5).104D4320,448
(C4xD5).105D4 = C42.30D10φ: D4/C22C2 ⊆ Out C4xD5160(C4xD5).105D4320,466
(C4xD5).106D4 = M4(2).25D10φ: D4/C22C2 ⊆ Out C4xD5804(C4xD5).106D4320,520
(C4xD5).107D4 = Q16:D10φ: D4/C22C2 ⊆ Out C4xD5804(C4xD5).107D4320,1440
(C4xD5).108D4 = D10.10D8φ: D4/C22C2 ⊆ Out C4xD580(C4xD5).108D4320,231
(C4xD5).109D4 = C20.10C42φ: D4/C22C2 ⊆ Out C4xD5160(C4xD5).109D4320,234
(C4xD5).110D4 = M4(2):F5φ: D4/C22C2 ⊆ Out C4xD5408(C4xD5).110D4320,237
(C4xD5).111D4 = M4(2):4F5φ: D4/C22C2 ⊆ Out C4xD5808(C4xD5).111D4320,240
(C4xD5).112D4 = D10:10M4(2)φ: D4/C22C2 ⊆ Out C4xD580(C4xD5).112D4320,1094
(C4xD5).113D4 = D10:6(C4:C4)φ: D4/C22C2 ⊆ Out C4xD580(C4xD5).113D4320,1103
(C4xD5).114D4 = C4oD4:F5φ: D4/C22C2 ⊆ Out C4xD5408(C4xD5).114D4320,1131
(C4xD5).115D4 = D4:F5:C2φ: D4/C22C2 ⊆ Out C4xD5808(C4xD5).115D4320,1133
(C4xD5).116D4 = D10.3M4(2)φ: D4/C22C2 ⊆ Out C4xD580(C4xD5).116D4320,230
(C4xD5).117D4 = M4(2):3F5φ: D4/C22C2 ⊆ Out C4xD5408(C4xD5).117D4320,238
(C4xD5).118D4 = M4(2).F5φ: D4/C22C2 ⊆ Out C4xD5808(C4xD5).118D4320,239
(C4xD5).119D4 = D10.11M4(2)φ: D4/C22C2 ⊆ Out C4xD580(C4xD5).119D4320,1091
(C4xD5).120D4 = C4xC22:F5φ: D4/C22C2 ⊆ Out C4xD580(C4xD5).120D4320,1101
(C4xD5).121D4 = D5:C4wrC2φ: D4/C22C2 ⊆ Out C4xD5408(C4xD5).121D4320,1130
(C4xD5).122D4 = D5xC22:C8φ: trivial image80(C4xD5).122D4320,351
(C4xD5).123D4 = D5xC4:C8φ: trivial image160(C4xD5).123D4320,459
(C4xD5).124D4 = D5xC4oD8φ: trivial image804(C4xD5).124D4320,1439

׿
x
:
Z
F
o
wr
Q
<