extension | φ:Q→Out N | d | ρ | Label | ID |
(C4×D5).1D4 = D5×C4.D4 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 40 | 8+ | (C4xD5).1D4 | 320,371 |
(C4×D5).2D4 = D5×C4.10D4 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).2D4 | 320,377 |
(C4×D5).3D4 = (D4×D5)⋊C4 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).3D4 | 320,397 |
(C4×D5).4D4 = D4⋊(C4×D5) | φ: D4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).4D4 | 320,398 |
(C4×D5).5D4 = (Q8×D5)⋊C4 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).5D4 | 320,429 |
(C4×D5).6D4 = Q8⋊(C4×D5) | φ: D4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).6D4 | 320,430 |
(C4×D5).7D4 = D16⋊D5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).7D4 | 320,538 |
(C4×D5).8D4 = C16⋊D10 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 4+ | (C4xD5).8D4 | 320,541 |
(C4×D5).9D4 = SD32⋊D5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 160 | 4- | (C4xD5).9D4 | 320,542 |
(C4×D5).10D4 = Q32⋊D5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 160 | 4 | (C4xD5).10D4 | 320,545 |
(C4×D5).11D4 = C10.162- 1+4 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).11D4 | 320,1300 |
(C4×D5).12D4 = C42.141D10 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).12D4 | 320,1347 |
(C4×D5).13D4 = C42.171D10 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).13D4 | 320,1396 |
(C4×D5).14D4 = C2×D8⋊D5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).14D4 | 320,1427 |
(C4×D5).15D4 = C2×D40⋊C2 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).15D4 | 320,1431 |
(C4×D5).16D4 = C2×SD16⋊D5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).16D4 | 320,1432 |
(C4×D5).17D4 = C2×Q16⋊D5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).17D4 | 320,1436 |
(C4×D5).18D4 = D10.18D8 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).18D4 | 320,212 |
(C4×D5).19D4 = C20.C42 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).19D4 | 320,213 |
(C4×D5).20D4 = D10.D8 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).20D4 | 320,241 |
(C4×D5).21D4 = D5.D16 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).21D4 | 320,242 |
(C4×D5).22D4 = D8.F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 160 | 8- | (C4xD5).22D4 | 320,243 |
(C4×D5).23D4 = D40.C4 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).23D4 | 320,244 |
(C4×D5).24D4 = D40⋊1C4 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).24D4 | 320,245 |
(C4×D5).25D4 = D5.Q32 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).25D4 | 320,246 |
(C4×D5).26D4 = Q16.F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 160 | 8+ | (C4xD5).26D4 | 320,247 |
(C4×D5).27D4 = Dic20.C4 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 160 | 8- | (C4xD5).27D4 | 320,248 |
(C4×D5).28D4 = C4⋊C4.9F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).28D4 | 320,1046 |
(C4×D5).29D4 = C20⋊(C4⋊C4) | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).29D4 | 320,1050 |
(C4×D5).30D4 = M4(2)⋊1F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).30D4 | 320,1065 |
(C4×D5).31D4 = M4(2).1F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).31D4 | 320,1067 |
(C4×D5).32D4 = C2×D20⋊C4 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).32D4 | 320,1104 |
(C4×D5).33D4 = (D4×C10)⋊C4 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 40 | 8+ | (C4xD5).33D4 | 320,1105 |
(C4×D5).34D4 = C2×D4⋊F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).34D4 | 320,1106 |
(C4×D5).35D4 = (C2×D4)⋊6F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).35D4 | 320,1107 |
(C4×D5).36D4 = (C2×D4)⋊8F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).36D4 | 320,1109 |
(C4×D5).37D4 = (C2×D4).8F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).37D4 | 320,1114 |
(C4×D5).38D4 = D5⋊(C4.D4) | φ: D4/C2 → C22 ⊆ Out C4×D5 | 40 | 8+ | (C4xD5).38D4 | 320,1116 |
(C4×D5).39D4 = C2.(D4×F5) | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).39D4 | 320,1118 |
(C4×D5).40D4 = C2×Q8⋊F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).40D4 | 320,1119 |
(C4×D5).41D4 = (C2×Q8)⋊4F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).41D4 | 320,1120 |
(C4×D5).42D4 = C2×Q8⋊2F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).42D4 | 320,1121 |
(C4×D5).43D4 = (C2×Q8)⋊6F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).43D4 | 320,1122 |
(C4×D5).44D4 = (C2×Q8)⋊7F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).44D4 | 320,1123 |
(C4×D5).45D4 = (C2×Q8).5F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 160 | | (C4xD5).45D4 | 320,1125 |
(C4×D5).46D4 = (C2×Q8).7F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).46D4 | 320,1127 |
(C4×D5).47D4 = (C2×F5)⋊Q8 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | | (C4xD5).47D4 | 320,1128 |
(C4×D5).48D4 = C80⋊4C4 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).48D4 | 320,185 |
(C4×D5).49D4 = C80⋊5C4 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).49D4 | 320,186 |
(C4×D5).50D4 = C42⋊3F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).50D4 | 320,201 |
(C4×D5).51D4 = C20.24C42 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).51D4 | 320,233 |
(C4×D5).52D4 = C20.25C42 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).52D4 | 320,235 |
(C4×D5).53D4 = C23⋊F5⋊5C2 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).53D4 | 320,1083 |
(C4×D5).54D4 = (C4×D5).D4 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).54D4 | 320,1099 |
(C4×D5).55D4 = (C2×C8)⋊F5 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).55D4 | 320,232 |
(C4×D5).56D4 = C4○D20⋊C4 | φ: D4/C2 → C22 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).56D4 | 320,1132 |
(C4×D5).57D4 = D5×D16 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 80 | 4+ | (C4xD5).57D4 | 320,537 |
(C4×D5).58D4 = D16⋊3D5 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | 4- | (C4xD5).58D4 | 320,539 |
(C4×D5).59D4 = D5×SD32 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).59D4 | 320,540 |
(C4×D5).60D4 = SD32⋊3D5 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | 4 | (C4xD5).60D4 | 320,543 |
(C4×D5).61D4 = D5×Q32 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | 4- | (C4xD5).61D4 | 320,544 |
(C4×D5).62D4 = D80⋊5C2 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | 4+ | (C4xD5).62D4 | 320,546 |
(C4×D5).63D4 = D5×C4.4D4 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).63D4 | 320,1345 |
(C4×D5).64D4 = D5×C4⋊Q8 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).64D4 | 320,1395 |
(C4×D5).65D4 = C2×D5×D8 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).65D4 | 320,1426 |
(C4×D5).66D4 = C2×D8⋊3D5 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).66D4 | 320,1428 |
(C4×D5).67D4 = C2×D5×SD16 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).67D4 | 320,1430 |
(C4×D5).68D4 = C2×SD16⋊3D5 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).68D4 | 320,1433 |
(C4×D5).69D4 = C2×D5×Q16 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).69D4 | 320,1435 |
(C4×D5).70D4 = C2×Q8.D10 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).70D4 | 320,1437 |
(C4×D5).71D4 = D5×C4≀C2 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 40 | 4 | (C4xD5).71D4 | 320,447 |
(C4×D5).72D4 = C20⋊5M4(2) | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).72D4 | 320,464 |
(C4×D5).73D4 = D5×C8.C4 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).73D4 | 320,519 |
(C4×D5).74D4 = C80⋊2C4 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).74D4 | 320,187 |
(C4×D5).75D4 = C80⋊3C4 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).75D4 | 320,188 |
(C4×D5).76D4 = C16.F5 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | 4 | (C4xD5).76D4 | 320,189 |
(C4×D5).77D4 = C80.2C4 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | 4 | (C4xD5).77D4 | 320,190 |
(C4×D5).78D4 = C20⋊3M4(2) | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).78D4 | 320,1019 |
(C4×D5).79D4 = C42.14F5 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).79D4 | 320,1020 |
(C4×D5).80D4 = C42⋊8F5 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).80D4 | 320,1026 |
(C4×D5).81D4 = C42⋊9F5 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).81D4 | 320,1027 |
(C4×D5).82D4 = C2×C40⋊C4 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).82D4 | 320,1057 |
(C4×D5).83D4 = C2×D5.D8 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).83D4 | 320,1058 |
(C4×D5).84D4 = C2×C40.C4 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).84D4 | 320,1060 |
(C4×D5).85D4 = C2×D10.Q8 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).85D4 | 320,1061 |
(C4×D5).86D4 = C42⋊6F5 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 40 | 4 | (C4xD5).86D4 | 320,200 |
(C4×D5).87D4 = C42.11F5 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).87D4 | 320,1017 |
(C4×D5).88D4 = C4×C4⋊F5 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).88D4 | 320,1025 |
(C4×D5).89D4 = (C2×C8)⋊6F5 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).89D4 | 320,1059 |
(C4×D5).90D4 = (C8×D5).C4 | φ: D4/C4 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).90D4 | 320,1062 |
(C4×D5).91D4 = M4(2).19D10 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).91D4 | 320,372 |
(C4×D5).92D4 = M4(2).21D10 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).92D4 | 320,378 |
(C4×D5).93D4 = D5×D4⋊C4 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).93D4 | 320,396 |
(C4×D5).94D4 = D4⋊2D5⋊C4 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).94D4 | 320,399 |
(C4×D5).95D4 = D5×Q8⋊C4 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).95D4 | 320,428 |
(C4×D5).96D4 = Q8⋊2D5⋊C4 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).96D4 | 320,431 |
(C4×D5).97D4 = D5×C22⋊Q8 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).97D4 | 320,1298 |
(C4×D5).98D4 = D5×C8⋊C22 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 40 | 8+ | (C4xD5).98D4 | 320,1444 |
(C4×D5).99D4 = SD16⋊D10 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).99D4 | 320,1445 |
(C4×D5).100D4 = D5×C8.C22 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | 8- | (C4xD5).100D4 | 320,1448 |
(C4×D5).101D4 = D40⋊C22 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | 8+ | (C4xD5).101D4 | 320,1449 |
(C4×D5).102D4 = D10⋊7M4(2) | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).102D4 | 320,353 |
(C4×D5).103D4 = C22⋊C8⋊D5 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).103D4 | 320,354 |
(C4×D5).104D4 = C42⋊D10 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).104D4 | 320,448 |
(C4×D5).105D4 = C42.30D10 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).105D4 | 320,466 |
(C4×D5).106D4 = M4(2).25D10 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).106D4 | 320,520 |
(C4×D5).107D4 = Q16⋊D10 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | 4 | (C4xD5).107D4 | 320,1440 |
(C4×D5).108D4 = D10.10D8 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).108D4 | 320,231 |
(C4×D5).109D4 = C20.10C42 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 160 | | (C4xD5).109D4 | 320,234 |
(C4×D5).110D4 = M4(2)⋊F5 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).110D4 | 320,237 |
(C4×D5).111D4 = M4(2)⋊4F5 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).111D4 | 320,240 |
(C4×D5).112D4 = D10⋊10M4(2) | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).112D4 | 320,1094 |
(C4×D5).113D4 = D10⋊6(C4⋊C4) | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).113D4 | 320,1103 |
(C4×D5).114D4 = C4○D4⋊F5 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).114D4 | 320,1131 |
(C4×D5).115D4 = D4⋊F5⋊C2 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).115D4 | 320,1133 |
(C4×D5).116D4 = D10.3M4(2) | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).116D4 | 320,230 |
(C4×D5).117D4 = M4(2)⋊3F5 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).117D4 | 320,238 |
(C4×D5).118D4 = M4(2).F5 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | 8 | (C4xD5).118D4 | 320,239 |
(C4×D5).119D4 = D10.11M4(2) | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).119D4 | 320,1091 |
(C4×D5).120D4 = C4×C22⋊F5 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 80 | | (C4xD5).120D4 | 320,1101 |
(C4×D5).121D4 = D5⋊C4≀C2 | φ: D4/C22 → C2 ⊆ Out C4×D5 | 40 | 8 | (C4xD5).121D4 | 320,1130 |
(C4×D5).122D4 = D5×C22⋊C8 | φ: trivial image | 80 | | (C4xD5).122D4 | 320,351 |
(C4×D5).123D4 = D5×C4⋊C8 | φ: trivial image | 160 | | (C4xD5).123D4 | 320,459 |
(C4×D5).124D4 = D5×C4○D8 | φ: trivial image | 80 | 4 | (C4xD5).124D4 | 320,1439 |