Direct product G=NxQ with N=D40 and Q=C4
Semidirect products G=N:Q with N=D40 and Q=C4
extension | φ:Q→Out N | d | ρ | Label | ID |
D40:1C4 = D40:1C4 | φ: C4/C1 → C4 ⊆ Out D40 | 80 | 8+ | D40:1C4 | 320,245 |
D40:2C4 = D40:C4 | φ: C4/C1 → C4 ⊆ Out D40 | 40 | 8+ | D40:2C4 | 320,1069 |
D40:3C4 = Q16:F5 | φ: C4/C1 → C4 ⊆ Out D40 | 80 | 8+ | D40:3C4 | 320,1079 |
D40:4C4 = D5.D16 | φ: C4/C1 → C4 ⊆ Out D40 | 80 | 8+ | D40:4C4 | 320,242 |
D40:5C4 = D8xF5 | φ: C4/C1 → C4 ⊆ Out D40 | 40 | 8+ | D40:5C4 | 320,1068 |
D40:6C4 = Q16:5F5 | φ: C4/C1 → C4 ⊆ Out D40 | 80 | 8+ | D40:6C4 | 320,1078 |
D40:7C4 = D40:7C4 | φ: C4/C2 → C2 ⊆ Out D40 | 160 | | D40:7C4 | 320,67 |
D40:8C4 = D40:8C4 | φ: C4/C2 → C2 ⊆ Out D40 | 80 | 4 | D40:8C4 | 320,76 |
D40:9C4 = D40:9C4 | φ: C4/C2 → C2 ⊆ Out D40 | 160 | | D40:9C4 | 320,338 |
D40:10C4 = D40:10C4 | φ: C4/C2 → C2 ⊆ Out D40 | 80 | 4 | D40:10C4 | 320,344 |
D40:11C4 = C40.5D4 | φ: C4/C2 → C2 ⊆ Out D40 | 160 | | D40:11C4 | 320,49 |
D40:12C4 = D40:12C4 | φ: C4/C2 → C2 ⊆ Out D40 | 160 | | D40:12C4 | 320,499 |
D40:13C4 = D40:13C4 | φ: C4/C2 → C2 ⊆ Out D40 | 80 | 4 | D40:13C4 | 320,522 |
D40:14C4 = D40:14C4 | φ: C4/C2 → C2 ⊆ Out D40 | 80 | 4 | D40:14C4 | 320,46 |
D40:15C4 = D40:15C4 | φ: C4/C2 → C2 ⊆ Out D40 | 160 | | D40:15C4 | 320,496 |
D40:16C4 = D40:16C4 | φ: C4/C2 → C2 ⊆ Out D40 | 80 | 4 | D40:16C4 | 320,521 |
D40:17C4 = D40:17C4 | φ: trivial image | 80 | 2 | D40:17C4 | 320,327 |
Non-split extensions G=N.Q with N=D40 and Q=C4
x
:
Z
F
o
wr
Q
<