Extensions 1→N→G→Q→1 with N=D40 and Q=C4

Direct product G=NxQ with N=D40 and Q=C4
dρLabelID
C4xD40160C4xD40320,319

Semidirect products G=N:Q with N=D40 and Q=C4
extensionφ:Q→Out NdρLabelID
D40:1C4 = D40:1C4φ: C4/C1C4 ⊆ Out D40808+D40:1C4320,245
D40:2C4 = D40:C4φ: C4/C1C4 ⊆ Out D40408+D40:2C4320,1069
D40:3C4 = Q16:F5φ: C4/C1C4 ⊆ Out D40808+D40:3C4320,1079
D40:4C4 = D5.D16φ: C4/C1C4 ⊆ Out D40808+D40:4C4320,242
D40:5C4 = D8xF5φ: C4/C1C4 ⊆ Out D40408+D40:5C4320,1068
D40:6C4 = Q16:5F5φ: C4/C1C4 ⊆ Out D40808+D40:6C4320,1078
D40:7C4 = D40:7C4φ: C4/C2C2 ⊆ Out D40160D40:7C4320,67
D40:8C4 = D40:8C4φ: C4/C2C2 ⊆ Out D40804D40:8C4320,76
D40:9C4 = D40:9C4φ: C4/C2C2 ⊆ Out D40160D40:9C4320,338
D40:10C4 = D40:10C4φ: C4/C2C2 ⊆ Out D40804D40:10C4320,344
D40:11C4 = C40.5D4φ: C4/C2C2 ⊆ Out D40160D40:11C4320,49
D40:12C4 = D40:12C4φ: C4/C2C2 ⊆ Out D40160D40:12C4320,499
D40:13C4 = D40:13C4φ: C4/C2C2 ⊆ Out D40804D40:13C4320,522
D40:14C4 = D40:14C4φ: C4/C2C2 ⊆ Out D40804D40:14C4320,46
D40:15C4 = D40:15C4φ: C4/C2C2 ⊆ Out D40160D40:15C4320,496
D40:16C4 = D40:16C4φ: C4/C2C2 ⊆ Out D40804D40:16C4320,521
D40:17C4 = D40:17C4φ: trivial image802D40:17C4320,327

Non-split extensions G=N.Q with N=D40 and Q=C4
extensionφ:Q→Out NdρLabelID
D40.1C4 = D40.C4φ: C4/C1C4 ⊆ Out D40808+D40.1C4320,244
D40.2C4 = Q16.F5φ: C4/C1C4 ⊆ Out D401608+D40.2C4320,247
D40.3C4 = D40.3C4φ: C4/C2C2 ⊆ Out D401602D40.3C4320,68
D40.4C4 = D40.4C4φ: C4/C2C2 ⊆ Out D40804+D40.4C4320,74
D40.5C4 = D40.5C4φ: C4/C2C2 ⊆ Out D401604D40.5C4320,55
D40.6C4 = D40.6C4φ: C4/C2C2 ⊆ Out D40804+D40.6C4320,53

׿
x
:
Z
F
o
wr
Q
<