Copied to
clipboard

G = Q16.F5order 320 = 26·5

1st non-split extension by Q16 of F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D40.2C4, Q16.1F5, D10.6SD16, Dic5.22D8, D5⋊C163C2, C8.13(C2×F5), C40.11(C2×C4), (C4×D5).26D4, C52C8.17D4, D10.Q82C2, (C5×Q16).2C4, C52(D8.C4), C4.7(C22⋊F5), Q8.D10.4C2, C20.7(C22⋊C4), (C8×D5).20C22, C2.12(D20⋊C4), C10.11(D4⋊C4), SmallGroup(320,247)

Series: Derived Chief Lower central Upper central

C1C40 — Q16.F5
C1C5C10C20C4×D5C8×D5D10.Q8 — Q16.F5
C5C10C20C40 — Q16.F5
C1C2C4C8Q16

Generators and relations for Q16.F5
 G = < a,b,c,d | a8=c5=1, b2=d4=a4, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a-1b, dcd-1=c3 >

10C2
40C2
4C4
5C22
5C4
20C22
2D5
8D5
2Q8
5C2×C4
5C8
10D4
20C2×C4
20D4
20C8
4C20
4D10
5D8
5C2×C8
10C4○D4
10SD16
10M4(2)
10C16
2C5×Q8
2D20
4C4×D5
4D20
4C5⋊C8
5C4○D8
5C2×C16
5C8.C4
2C5⋊C16
2C4.F5
2Q82D5
2Q8⋊D5
5D8.C4

Character table of Q16.F5

 class 12A2B2C4A4B4C4D58A8B8C8D8E8F1016A16B16C16D16E16F16G16H20A20B20C40A40B
 size 111040255842210104040410101010101010108161688
ρ111111111111111111111111111111    trivial
ρ2111-1111-111111111-1-1-1-1-1-1-1-11-1-111    linear of order 2
ρ3111-1111-111111-1-11111111111-1-111    linear of order 2
ρ41111111111111-1-11-1-1-1-1-1-1-1-111111    linear of order 2
ρ511-111-1-1-1111-1-1i-i1-iiiii-i-i-i1-1-111    linear of order 4
ρ611-111-1-1-1111-1-1-ii1i-i-i-i-iiii1-1-111    linear of order 4
ρ711-1-11-1-11111-1-1i-i1i-i-i-i-iiii11111    linear of order 4
ρ811-1-11-1-11111-1-1-ii1-iiiii-i-i-i11111    linear of order 4
ρ922-202-2-202-2-22200200000000200-2-2    orthogonal lifted from D4
ρ10222022202-2-2-2-200200000000200-2-2    orthogonal lifted from D4
ρ1122-20-2220200000022-2-222-2-22-20000    orthogonal lifted from D8
ρ1222-20-222020000002-222-2-222-2-20000    orthogonal lifted from D8
ρ132220-2-2-2020000002--2--2--2-2-2-2-2--2-20000    complex lifted from SD16
ρ142220-2-2-2020000002-2-2-2--2--2--2--2-2-20000    complex lifted from SD16
ρ152-20002i-2i02-22-2--200-2ζ169163ζ16316ζ1611169ζ1615165ζ1613167ζ16151613ζ167165ζ1611160002-2    complex lifted from D8.C4
ρ162-2000-2i2i022-2-2--200-2ζ16316ζ161116ζ169163ζ167165ζ16151613ζ1615165ζ1613167ζ1611169000-22    complex lifted from D8.C4
ρ172-20002i-2i022-2--2-200-2ζ16151613ζ1615165ζ1613167ζ1611169ζ16316ζ161116ζ169163ζ167165000-22    complex lifted from D8.C4
ρ182-20002i-2i02-22-2--200-2ζ161116ζ1611169ζ16316ζ1613167ζ1615165ζ167165ζ16151613ζ1691630002-2    complex lifted from D8.C4
ρ192-2000-2i2i02-22--2-200-2ζ1615165ζ167165ζ16151613ζ169163ζ161116ζ1611169ζ16316ζ16131670002-2    complex lifted from D8.C4
ρ202-20002i-2i022-2--2-200-2ζ167165ζ1613167ζ1615165ζ16316ζ1611169ζ169163ζ161116ζ16151613000-22    complex lifted from D8.C4
ρ212-2000-2i2i02-22--2-200-2ζ1613167ζ16151613ζ167165ζ161116ζ169163ζ16316ζ1611169ζ16151650002-2    complex lifted from D8.C4
ρ222-2000-2i2i022-2-2--200-2ζ1611169ζ169163ζ161116ζ16151613ζ167165ζ1613167ζ1615165ζ16316000-22    complex lifted from D8.C4
ρ2344004004-1440000-100000000-1-1-1-1-1    orthogonal lifted from F5
ρ244400400-4-1440000-100000000-111-1-1    orthogonal lifted from C2×F5
ρ2544004000-1-4-40000-100000000-1-5511    orthogonal lifted from C22⋊F5
ρ2644004000-1-4-40000-100000000-15-511    orthogonal lifted from C22⋊F5
ρ278800-8000-2000000-20000000020000    orthogonal lifted from D20⋊C4, Schur index 2
ρ288-8000000-2-42420000200000000000-22    orthogonal faithful, Schur index 2
ρ298-8000000-242-4200002000000000002-2    orthogonal faithful, Schur index 2

Smallest permutation representation of Q16.F5
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 87 5 83)(2 86 6 82)(3 85 7 81)(4 84 8 88)(9 120 13 116)(10 119 14 115)(11 118 15 114)(12 117 16 113)(17 135 21 131)(18 134 22 130)(19 133 23 129)(20 132 24 136)(25 139 29 143)(26 138 30 142)(27 137 31 141)(28 144 32 140)(33 127 37 123)(34 126 38 122)(35 125 39 121)(36 124 40 128)(41 106 45 110)(42 105 46 109)(43 112 47 108)(44 111 48 107)(49 93 53 89)(50 92 54 96)(51 91 55 95)(52 90 56 94)(57 97 61 101)(58 104 62 100)(59 103 63 99)(60 102 64 98)(65 77 69 73)(66 76 70 80)(67 75 71 79)(68 74 72 78)(145 159 149 155)(146 158 150 154)(147 157 151 153)(148 156 152 160)
(1 49 44 66 63)(2 50 45 67 64)(3 51 46 68 57)(4 52 47 69 58)(5 53 48 70 59)(6 54 41 71 60)(7 55 42 72 61)(8 56 43 65 62)(9 21 27 155 33)(10 22 28 156 34)(11 23 29 157 35)(12 24 30 158 36)(13 17 31 159 37)(14 18 32 160 38)(15 19 25 153 39)(16 20 26 154 40)(73 104 84 90 108)(74 97 85 91 109)(75 98 86 92 110)(76 99 87 93 111)(77 100 88 94 112)(78 101 81 95 105)(79 102 82 96 106)(80 103 83 89 107)(113 132 138 146 128)(114 133 139 147 121)(115 134 140 148 122)(116 135 141 149 123)(117 136 142 150 124)(118 129 143 151 125)(119 130 144 152 126)(120 131 137 145 127)
(1 38 83 127 5 34 87 123)(2 37 84 126 6 33 88 122)(3 36 85 125 7 40 81 121)(4 35 86 124 8 39 82 128)(9 112 148 67 13 108 152 71)(10 111 149 66 14 107 145 70)(11 110 150 65 15 106 146 69)(12 109 151 72 16 105 147 68)(17 104 144 54 21 100 140 50)(18 103 137 53 22 99 141 49)(19 102 138 52 23 98 142 56)(20 101 139 51 24 97 143 55)(25 96 132 58 29 92 136 62)(26 95 133 57 30 91 129 61)(27 94 134 64 31 90 130 60)(28 93 135 63 32 89 131 59)(41 155 77 115 45 159 73 119)(42 154 78 114 46 158 74 118)(43 153 79 113 47 157 75 117)(44 160 80 120 48 156 76 116)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,87,5,83)(2,86,6,82)(3,85,7,81)(4,84,8,88)(9,120,13,116)(10,119,14,115)(11,118,15,114)(12,117,16,113)(17,135,21,131)(18,134,22,130)(19,133,23,129)(20,132,24,136)(25,139,29,143)(26,138,30,142)(27,137,31,141)(28,144,32,140)(33,127,37,123)(34,126,38,122)(35,125,39,121)(36,124,40,128)(41,106,45,110)(42,105,46,109)(43,112,47,108)(44,111,48,107)(49,93,53,89)(50,92,54,96)(51,91,55,95)(52,90,56,94)(57,97,61,101)(58,104,62,100)(59,103,63,99)(60,102,64,98)(65,77,69,73)(66,76,70,80)(67,75,71,79)(68,74,72,78)(145,159,149,155)(146,158,150,154)(147,157,151,153)(148,156,152,160), (1,49,44,66,63)(2,50,45,67,64)(3,51,46,68,57)(4,52,47,69,58)(5,53,48,70,59)(6,54,41,71,60)(7,55,42,72,61)(8,56,43,65,62)(9,21,27,155,33)(10,22,28,156,34)(11,23,29,157,35)(12,24,30,158,36)(13,17,31,159,37)(14,18,32,160,38)(15,19,25,153,39)(16,20,26,154,40)(73,104,84,90,108)(74,97,85,91,109)(75,98,86,92,110)(76,99,87,93,111)(77,100,88,94,112)(78,101,81,95,105)(79,102,82,96,106)(80,103,83,89,107)(113,132,138,146,128)(114,133,139,147,121)(115,134,140,148,122)(116,135,141,149,123)(117,136,142,150,124)(118,129,143,151,125)(119,130,144,152,126)(120,131,137,145,127), (1,38,83,127,5,34,87,123)(2,37,84,126,6,33,88,122)(3,36,85,125,7,40,81,121)(4,35,86,124,8,39,82,128)(9,112,148,67,13,108,152,71)(10,111,149,66,14,107,145,70)(11,110,150,65,15,106,146,69)(12,109,151,72,16,105,147,68)(17,104,144,54,21,100,140,50)(18,103,137,53,22,99,141,49)(19,102,138,52,23,98,142,56)(20,101,139,51,24,97,143,55)(25,96,132,58,29,92,136,62)(26,95,133,57,30,91,129,61)(27,94,134,64,31,90,130,60)(28,93,135,63,32,89,131,59)(41,155,77,115,45,159,73,119)(42,154,78,114,46,158,74,118)(43,153,79,113,47,157,75,117)(44,160,80,120,48,156,76,116)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,87,5,83)(2,86,6,82)(3,85,7,81)(4,84,8,88)(9,120,13,116)(10,119,14,115)(11,118,15,114)(12,117,16,113)(17,135,21,131)(18,134,22,130)(19,133,23,129)(20,132,24,136)(25,139,29,143)(26,138,30,142)(27,137,31,141)(28,144,32,140)(33,127,37,123)(34,126,38,122)(35,125,39,121)(36,124,40,128)(41,106,45,110)(42,105,46,109)(43,112,47,108)(44,111,48,107)(49,93,53,89)(50,92,54,96)(51,91,55,95)(52,90,56,94)(57,97,61,101)(58,104,62,100)(59,103,63,99)(60,102,64,98)(65,77,69,73)(66,76,70,80)(67,75,71,79)(68,74,72,78)(145,159,149,155)(146,158,150,154)(147,157,151,153)(148,156,152,160), (1,49,44,66,63)(2,50,45,67,64)(3,51,46,68,57)(4,52,47,69,58)(5,53,48,70,59)(6,54,41,71,60)(7,55,42,72,61)(8,56,43,65,62)(9,21,27,155,33)(10,22,28,156,34)(11,23,29,157,35)(12,24,30,158,36)(13,17,31,159,37)(14,18,32,160,38)(15,19,25,153,39)(16,20,26,154,40)(73,104,84,90,108)(74,97,85,91,109)(75,98,86,92,110)(76,99,87,93,111)(77,100,88,94,112)(78,101,81,95,105)(79,102,82,96,106)(80,103,83,89,107)(113,132,138,146,128)(114,133,139,147,121)(115,134,140,148,122)(116,135,141,149,123)(117,136,142,150,124)(118,129,143,151,125)(119,130,144,152,126)(120,131,137,145,127), (1,38,83,127,5,34,87,123)(2,37,84,126,6,33,88,122)(3,36,85,125,7,40,81,121)(4,35,86,124,8,39,82,128)(9,112,148,67,13,108,152,71)(10,111,149,66,14,107,145,70)(11,110,150,65,15,106,146,69)(12,109,151,72,16,105,147,68)(17,104,144,54,21,100,140,50)(18,103,137,53,22,99,141,49)(19,102,138,52,23,98,142,56)(20,101,139,51,24,97,143,55)(25,96,132,58,29,92,136,62)(26,95,133,57,30,91,129,61)(27,94,134,64,31,90,130,60)(28,93,135,63,32,89,131,59)(41,155,77,115,45,159,73,119)(42,154,78,114,46,158,74,118)(43,153,79,113,47,157,75,117)(44,160,80,120,48,156,76,116) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,87,5,83),(2,86,6,82),(3,85,7,81),(4,84,8,88),(9,120,13,116),(10,119,14,115),(11,118,15,114),(12,117,16,113),(17,135,21,131),(18,134,22,130),(19,133,23,129),(20,132,24,136),(25,139,29,143),(26,138,30,142),(27,137,31,141),(28,144,32,140),(33,127,37,123),(34,126,38,122),(35,125,39,121),(36,124,40,128),(41,106,45,110),(42,105,46,109),(43,112,47,108),(44,111,48,107),(49,93,53,89),(50,92,54,96),(51,91,55,95),(52,90,56,94),(57,97,61,101),(58,104,62,100),(59,103,63,99),(60,102,64,98),(65,77,69,73),(66,76,70,80),(67,75,71,79),(68,74,72,78),(145,159,149,155),(146,158,150,154),(147,157,151,153),(148,156,152,160)], [(1,49,44,66,63),(2,50,45,67,64),(3,51,46,68,57),(4,52,47,69,58),(5,53,48,70,59),(6,54,41,71,60),(7,55,42,72,61),(8,56,43,65,62),(9,21,27,155,33),(10,22,28,156,34),(11,23,29,157,35),(12,24,30,158,36),(13,17,31,159,37),(14,18,32,160,38),(15,19,25,153,39),(16,20,26,154,40),(73,104,84,90,108),(74,97,85,91,109),(75,98,86,92,110),(76,99,87,93,111),(77,100,88,94,112),(78,101,81,95,105),(79,102,82,96,106),(80,103,83,89,107),(113,132,138,146,128),(114,133,139,147,121),(115,134,140,148,122),(116,135,141,149,123),(117,136,142,150,124),(118,129,143,151,125),(119,130,144,152,126),(120,131,137,145,127)], [(1,38,83,127,5,34,87,123),(2,37,84,126,6,33,88,122),(3,36,85,125,7,40,81,121),(4,35,86,124,8,39,82,128),(9,112,148,67,13,108,152,71),(10,111,149,66,14,107,145,70),(11,110,150,65,15,106,146,69),(12,109,151,72,16,105,147,68),(17,104,144,54,21,100,140,50),(18,103,137,53,22,99,141,49),(19,102,138,52,23,98,142,56),(20,101,139,51,24,97,143,55),(25,96,132,58,29,92,136,62),(26,95,133,57,30,91,129,61),(27,94,134,64,31,90,130,60),(28,93,135,63,32,89,131,59),(41,155,77,115,45,159,73,119),(42,154,78,114,46,158,74,118),(43,153,79,113,47,157,75,117),(44,160,80,120,48,156,76,116)]])

Matrix representation of Q16.F5 in GL6(𝔽241)

112300000
11110000
00240000
00024000
00002400
00000240
,
6400000
01770000
001170234234
00712470
00071247
002342340117
,
100000
010000
00240240240240
001000
000100
000010
,
871400000
1401540000
005811614102
00139227125183
0013919714153
005819744183

G:=sub<GL(6,GF(241))| [11,11,0,0,0,0,230,11,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[64,0,0,0,0,0,0,177,0,0,0,0,0,0,117,7,0,234,0,0,0,124,7,234,0,0,234,7,124,0,0,0,234,0,7,117],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,1,0,0,0,0,240,0,1,0,0,0,240,0,0,1,0,0,240,0,0,0],[87,140,0,0,0,0,140,154,0,0,0,0,0,0,58,139,139,58,0,0,116,227,197,197,0,0,14,125,14,44,0,0,102,183,153,183] >;

Q16.F5 in GAP, Magma, Sage, TeX

Q_{16}.F_5
% in TeX

G:=Group("Q16.F5");
// GroupNames label

G:=SmallGroup(320,247);
// by ID

G=gap.SmallGroup(320,247);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,232,184,675,346,192,1684,851,102,6278,3156]);
// Polycyclic

G:=Group<a,b,c,d|a^8=c^5=1,b^2=d^4=a^4,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of Q16.F5 in TeX
Character table of Q16.F5 in TeX

׿
×
𝔽