Extensions 1→N→G→Q→1 with N=C2xC80 and Q=C2

Direct product G=NxQ with N=C2xC80 and Q=C2
dρLabelID
C22xC80320C2^2xC80320,1003

Semidirect products G=N:Q with N=C2xC80 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2xC80):1C2 = D10:1C16φ: C2/C1C2 ⊆ Aut C2xC80160(C2xC80):1C2320,65
(C2xC80):2C2 = D20.3C8φ: C2/C1C2 ⊆ Aut C2xC801602(C2xC80):2C2320,66
(C2xC80):3C2 = D40:7C4φ: C2/C1C2 ⊆ Aut C2xC80160(C2xC80):3C2320,67
(C2xC80):4C2 = D40.3C4φ: C2/C1C2 ⊆ Aut C2xC801602(C2xC80):4C2320,68
(C2xC80):5C2 = C5xC22:C16φ: C2/C1C2 ⊆ Aut C2xC80160(C2xC80):5C2320,153
(C2xC80):6C2 = C5xD4.C8φ: C2/C1C2 ⊆ Aut C2xC801602(C2xC80):6C2320,155
(C2xC80):7C2 = C5xC2.D16φ: C2/C1C2 ⊆ Aut C2xC80160(C2xC80):7C2320,162
(C2xC80):8C2 = C5xD8.C4φ: C2/C1C2 ⊆ Aut C2xC801602(C2xC80):8C2320,164
(C2xC80):9C2 = C2xD80φ: C2/C1C2 ⊆ Aut C2xC80160(C2xC80):9C2320,529
(C2xC80):10C2 = D80:7C2φ: C2/C1C2 ⊆ Aut C2xC801602(C2xC80):10C2320,531
(C2xC80):11C2 = C2xC16:D5φ: C2/C1C2 ⊆ Aut C2xC80160(C2xC80):11C2320,530
(C2xC80):12C2 = C10xD16φ: C2/C1C2 ⊆ Aut C2xC80160(C2xC80):12C2320,1006
(C2xC80):13C2 = C5xC4oD16φ: C2/C1C2 ⊆ Aut C2xC801602(C2xC80):13C2320,1009
(C2xC80):14C2 = D5xC2xC16φ: C2/C1C2 ⊆ Aut C2xC80160(C2xC80):14C2320,526
(C2xC80):15C2 = C2xC80:C2φ: C2/C1C2 ⊆ Aut C2xC80160(C2xC80):15C2320,527
(C2xC80):16C2 = D20.6C8φ: C2/C1C2 ⊆ Aut C2xC801602(C2xC80):16C2320,528
(C2xC80):17C2 = C10xSD32φ: C2/C1C2 ⊆ Aut C2xC80160(C2xC80):17C2320,1007
(C2xC80):18C2 = C10xM5(2)φ: C2/C1C2 ⊆ Aut C2xC80160(C2xC80):18C2320,1004
(C2xC80):19C2 = C5xD4oC16φ: C2/C1C2 ⊆ Aut C2xC801602(C2xC80):19C2320,1005

Non-split extensions G=N.Q with N=C2xC80 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2xC80).1C2 = C40.88D4φ: C2/C1C2 ⊆ Aut C2xC80320(C2xC80).1C2320,59
(C2xC80).2C2 = C40.78D4φ: C2/C1C2 ⊆ Aut C2xC80320(C2xC80).2C2320,61
(C2xC80).3C2 = C5xC2.Q32φ: C2/C1C2 ⊆ Aut C2xC80320(C2xC80).3C2320,163
(C2xC80).4C2 = C5xC4:C16φ: C2/C1C2 ⊆ Aut C2xC80320(C2xC80).4C2320,168
(C2xC80).5C2 = C80:13C4φ: C2/C1C2 ⊆ Aut C2xC80320(C2xC80).5C2320,62
(C2xC80).6C2 = C2xDic40φ: C2/C1C2 ⊆ Aut C2xC80320(C2xC80).6C2320,532
(C2xC80).7C2 = C80.6C4φ: C2/C1C2 ⊆ Aut C2xC801602(C2xC80).7C2320,64
(C2xC80).8C2 = C80:14C4φ: C2/C1C2 ⊆ Aut C2xC80320(C2xC80).8C2320,63
(C2xC80).9C2 = C5xC16:3C4φ: C2/C1C2 ⊆ Aut C2xC80320(C2xC80).9C2320,171
(C2xC80).10C2 = C10xQ32φ: C2/C1C2 ⊆ Aut C2xC80320(C2xC80).10C2320,1008
(C2xC80).11C2 = C5xC8.4Q8φ: C2/C1C2 ⊆ Aut C2xC801602(C2xC80).11C2320,173
(C2xC80).12C2 = C2xC5:2C32φ: C2/C1C2 ⊆ Aut C2xC80320(C2xC80).12C2320,56
(C2xC80).13C2 = C80.9C4φ: C2/C1C2 ⊆ Aut C2xC801602(C2xC80).13C2320,57
(C2xC80).14C2 = C16xDic5φ: C2/C1C2 ⊆ Aut C2xC80320(C2xC80).14C2320,58
(C2xC80).15C2 = C80:17C4φ: C2/C1C2 ⊆ Aut C2xC80320(C2xC80).15C2320,60
(C2xC80).16C2 = C5xC16:4C4φ: C2/C1C2 ⊆ Aut C2xC80320(C2xC80).16C2320,172
(C2xC80).17C2 = C5xC16:5C4φ: C2/C1C2 ⊆ Aut C2xC80320(C2xC80).17C2320,151
(C2xC80).18C2 = C5xM6(2)φ: C2/C1C2 ⊆ Aut C2xC801602(C2xC80).18C2320,175

׿
x
:
Z
F
o
wr
Q
<