metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D40⋊7C4, C2.2D80, C40.79D4, C10.5D16, C10.3SD32, C20.23SD16, C22.10D40, (C2×C80)⋊3C2, (C2×C16)⋊3D5, C40⋊5C4⋊1C2, C8.19(C4×D5), C5⋊3(C2.D16), C40.90(C2×C4), (C2×D40).1C2, (C2×C4).74D20, (C2×C10).16D8, (C2×C8).299D10, (C2×C20).372D4, C4.2(C40⋊C2), C8.36(C5⋊D4), C2.3(C16⋊D5), C2.7(D20⋊5C4), C20.87(C22⋊C4), (C2×C40).372C22, C10.30(D4⋊C4), C4.16(D10⋊C4), SmallGroup(320,67)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D40⋊7C4
G = < a,b,c | a40=b2=c4=1, bab=cac-1=a-1, cbc-1=a23b >
Subgroups: 478 in 66 conjugacy classes, 29 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, D5, C10, C16, C4⋊C4, C2×C8, D8, C2×D4, Dic5, C20, D10, C2×C10, C2.D8, C2×C16, C2×D8, C40, D20, C2×Dic5, C2×C20, C22×D5, C2.D16, C80, D40, D40, C4⋊Dic5, C2×C40, C2×D20, C40⋊5C4, C2×C80, C2×D40, D40⋊7C4
Quotients: C1, C2, C4, C22, C2×C4, D4, D5, C22⋊C4, D8, SD16, D10, D4⋊C4, D16, SD32, C4×D5, D20, C5⋊D4, C2.D16, C40⋊C2, D40, D10⋊C4, D80, C16⋊D5, D20⋊5C4, D40⋊7C4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 40)(2 39)(3 38)(4 37)(5 36)(6 35)(7 34)(8 33)(9 32)(10 31)(11 30)(12 29)(13 28)(14 27)(15 26)(16 25)(17 24)(18 23)(19 22)(20 21)(41 47)(42 46)(43 45)(48 80)(49 79)(50 78)(51 77)(52 76)(53 75)(54 74)(55 73)(56 72)(57 71)(58 70)(59 69)(60 68)(61 67)(62 66)(63 65)(81 87)(82 86)(83 85)(88 120)(89 119)(90 118)(91 117)(92 116)(93 115)(94 114)(95 113)(96 112)(97 111)(98 110)(99 109)(100 108)(101 107)(102 106)(103 105)(121 130)(122 129)(123 128)(124 127)(125 126)(131 160)(132 159)(133 158)(134 157)(135 156)(136 155)(137 154)(138 153)(139 152)(140 151)(141 150)(142 149)(143 148)(144 147)(145 146)
(1 52 146 112)(2 51 147 111)(3 50 148 110)(4 49 149 109)(5 48 150 108)(6 47 151 107)(7 46 152 106)(8 45 153 105)(9 44 154 104)(10 43 155 103)(11 42 156 102)(12 41 157 101)(13 80 158 100)(14 79 159 99)(15 78 160 98)(16 77 121 97)(17 76 122 96)(18 75 123 95)(19 74 124 94)(20 73 125 93)(21 72 126 92)(22 71 127 91)(23 70 128 90)(24 69 129 89)(25 68 130 88)(26 67 131 87)(27 66 132 86)(28 65 133 85)(29 64 134 84)(30 63 135 83)(31 62 136 82)(32 61 137 81)(33 60 138 120)(34 59 139 119)(35 58 140 118)(36 57 141 117)(37 56 142 116)(38 55 143 115)(39 54 144 114)(40 53 145 113)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(41,47)(42,46)(43,45)(48,80)(49,79)(50,78)(51,77)(52,76)(53,75)(54,74)(55,73)(56,72)(57,71)(58,70)(59,69)(60,68)(61,67)(62,66)(63,65)(81,87)(82,86)(83,85)(88,120)(89,119)(90,118)(91,117)(92,116)(93,115)(94,114)(95,113)(96,112)(97,111)(98,110)(99,109)(100,108)(101,107)(102,106)(103,105)(121,130)(122,129)(123,128)(124,127)(125,126)(131,160)(132,159)(133,158)(134,157)(135,156)(136,155)(137,154)(138,153)(139,152)(140,151)(141,150)(142,149)(143,148)(144,147)(145,146), (1,52,146,112)(2,51,147,111)(3,50,148,110)(4,49,149,109)(5,48,150,108)(6,47,151,107)(7,46,152,106)(8,45,153,105)(9,44,154,104)(10,43,155,103)(11,42,156,102)(12,41,157,101)(13,80,158,100)(14,79,159,99)(15,78,160,98)(16,77,121,97)(17,76,122,96)(18,75,123,95)(19,74,124,94)(20,73,125,93)(21,72,126,92)(22,71,127,91)(23,70,128,90)(24,69,129,89)(25,68,130,88)(26,67,131,87)(27,66,132,86)(28,65,133,85)(29,64,134,84)(30,63,135,83)(31,62,136,82)(32,61,137,81)(33,60,138,120)(34,59,139,119)(35,58,140,118)(36,57,141,117)(37,56,142,116)(38,55,143,115)(39,54,144,114)(40,53,145,113)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(41,47)(42,46)(43,45)(48,80)(49,79)(50,78)(51,77)(52,76)(53,75)(54,74)(55,73)(56,72)(57,71)(58,70)(59,69)(60,68)(61,67)(62,66)(63,65)(81,87)(82,86)(83,85)(88,120)(89,119)(90,118)(91,117)(92,116)(93,115)(94,114)(95,113)(96,112)(97,111)(98,110)(99,109)(100,108)(101,107)(102,106)(103,105)(121,130)(122,129)(123,128)(124,127)(125,126)(131,160)(132,159)(133,158)(134,157)(135,156)(136,155)(137,154)(138,153)(139,152)(140,151)(141,150)(142,149)(143,148)(144,147)(145,146), (1,52,146,112)(2,51,147,111)(3,50,148,110)(4,49,149,109)(5,48,150,108)(6,47,151,107)(7,46,152,106)(8,45,153,105)(9,44,154,104)(10,43,155,103)(11,42,156,102)(12,41,157,101)(13,80,158,100)(14,79,159,99)(15,78,160,98)(16,77,121,97)(17,76,122,96)(18,75,123,95)(19,74,124,94)(20,73,125,93)(21,72,126,92)(22,71,127,91)(23,70,128,90)(24,69,129,89)(25,68,130,88)(26,67,131,87)(27,66,132,86)(28,65,133,85)(29,64,134,84)(30,63,135,83)(31,62,136,82)(32,61,137,81)(33,60,138,120)(34,59,139,119)(35,58,140,118)(36,57,141,117)(37,56,142,116)(38,55,143,115)(39,54,144,114)(40,53,145,113) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,40),(2,39),(3,38),(4,37),(5,36),(6,35),(7,34),(8,33),(9,32),(10,31),(11,30),(12,29),(13,28),(14,27),(15,26),(16,25),(17,24),(18,23),(19,22),(20,21),(41,47),(42,46),(43,45),(48,80),(49,79),(50,78),(51,77),(52,76),(53,75),(54,74),(55,73),(56,72),(57,71),(58,70),(59,69),(60,68),(61,67),(62,66),(63,65),(81,87),(82,86),(83,85),(88,120),(89,119),(90,118),(91,117),(92,116),(93,115),(94,114),(95,113),(96,112),(97,111),(98,110),(99,109),(100,108),(101,107),(102,106),(103,105),(121,130),(122,129),(123,128),(124,127),(125,126),(131,160),(132,159),(133,158),(134,157),(135,156),(136,155),(137,154),(138,153),(139,152),(140,151),(141,150),(142,149),(143,148),(144,147),(145,146)], [(1,52,146,112),(2,51,147,111),(3,50,148,110),(4,49,149,109),(5,48,150,108),(6,47,151,107),(7,46,152,106),(8,45,153,105),(9,44,154,104),(10,43,155,103),(11,42,156,102),(12,41,157,101),(13,80,158,100),(14,79,159,99),(15,78,160,98),(16,77,121,97),(17,76,122,96),(18,75,123,95),(19,74,124,94),(20,73,125,93),(21,72,126,92),(22,71,127,91),(23,70,128,90),(24,69,129,89),(25,68,130,88),(26,67,131,87),(27,66,132,86),(28,65,133,85),(29,64,134,84),(30,63,135,83),(31,62,136,82),(32,61,137,81),(33,60,138,120),(34,59,139,119),(35,58,140,118),(36,57,141,117),(37,56,142,116),(38,55,143,115),(39,54,144,114),(40,53,145,113)]])
86 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 16A | ··· | 16H | 20A | ··· | 20H | 40A | ··· | 40P | 80A | ··· | 80AF |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 16 | ··· | 16 | 20 | ··· | 20 | 40 | ··· | 40 | 80 | ··· | 80 |
| size | 1 | 1 | 1 | 1 | 40 | 40 | 2 | 2 | 40 | 40 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
86 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||
| image | C1 | C2 | C2 | C2 | C4 | D4 | D4 | D5 | SD16 | D8 | D10 | D16 | SD32 | C4×D5 | C5⋊D4 | D20 | C40⋊C2 | D40 | D80 | C16⋊D5 |
| kernel | D40⋊7C4 | C40⋊5C4 | C2×C80 | C2×D40 | D40 | C40 | C2×C20 | C2×C16 | C20 | C2×C10 | C2×C8 | C10 | C10 | C8 | C8 | C2×C4 | C4 | C22 | C2 | C2 |
| # reps | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 16 | 16 |
Matrix representation of D40⋊7C4 ►in GL4(𝔽241) generated by
| 11 | 230 | 0 | 0 |
| 11 | 11 | 0 | 0 |
| 0 | 0 | 20 | 194 |
| 0 | 0 | 47 | 227 |
| 11 | 230 | 0 | 0 |
| 230 | 230 | 0 | 0 |
| 0 | 0 | 199 | 29 |
| 0 | 0 | 14 | 42 |
| 214 | 85 | 0 | 0 |
| 85 | 27 | 0 | 0 |
| 0 | 0 | 3 | 170 |
| 0 | 0 | 85 | 238 |
G:=sub<GL(4,GF(241))| [11,11,0,0,230,11,0,0,0,0,20,47,0,0,194,227],[11,230,0,0,230,230,0,0,0,0,199,14,0,0,29,42],[214,85,0,0,85,27,0,0,0,0,3,85,0,0,170,238] >;
D40⋊7C4 in GAP, Magma, Sage, TeX
D_{40}\rtimes_7C_4 % in TeX
G:=Group("D40:7C4"); // GroupNames label
G:=SmallGroup(320,67);
// by ID
G=gap.SmallGroup(320,67);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,85,204,422,268,1684,102,12550]);
// Polycyclic
G:=Group<a,b,c|a^40=b^2=c^4=1,b*a*b=c*a*c^-1=a^-1,c*b*c^-1=a^23*b>;
// generators/relations