metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D80⋊7C2, C8.13D20, C4.20D40, C40.63D4, C20.38D8, Dic40⋊7C2, C16.16D10, C22.1D40, C40.57C23, C80.18C22, D40.7C22, Dic20.7C22, (C2×C16)⋊6D5, (C2×C80)⋊10C2, C5⋊1(C4○D16), C16⋊D5⋊7C2, C4.38(C2×D20), (C2×C10).20D8, C10.11(C2×D8), C2.13(C2×D40), (C2×C4).85D20, D40⋊7C2⋊1C2, (C2×C20).395D4, (C2×C8).313D10, C20.281(C2×D4), C8.47(C22×D5), (C2×C40).385C22, SmallGroup(320,531)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D80⋊7C2
G = < a,b,c | a80=b2=c2=1, bab=a-1, ac=ca, cbc=a40b >
Subgroups: 478 in 84 conjugacy classes, 35 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, D5, C10, C10, C16, C2×C8, D8, SD16, Q16, C4○D4, Dic5, C20, D10, C2×C10, C2×C16, D16, SD32, Q32, C4○D8, C40, Dic10, C4×D5, D20, C5⋊D4, C2×C20, C4○D16, C80, C40⋊C2, D40, Dic20, C2×C40, C4○D20, D80, C16⋊D5, Dic40, C2×C80, D40⋊7C2, D80⋊7C2
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, C2×D8, D20, C22×D5, C4○D16, D40, C2×D20, C2×D40, D80⋊7C2
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 80)(17 79)(18 78)(19 77)(20 76)(21 75)(22 74)(23 73)(24 72)(25 71)(26 70)(27 69)(28 68)(29 67)(30 66)(31 65)(32 64)(33 63)(34 62)(35 61)(36 60)(37 59)(38 58)(39 57)(40 56)(41 55)(42 54)(43 53)(44 52)(45 51)(46 50)(47 49)(81 85)(82 84)(86 160)(87 159)(88 158)(89 157)(90 156)(91 155)(92 154)(93 153)(94 152)(95 151)(96 150)(97 149)(98 148)(99 147)(100 146)(101 145)(102 144)(103 143)(104 142)(105 141)(106 140)(107 139)(108 138)(109 137)(110 136)(111 135)(112 134)(113 133)(114 132)(115 131)(116 130)(117 129)(118 128)(119 127)(120 126)(121 125)(122 124)
(1 136)(2 137)(3 138)(4 139)(5 140)(6 141)(7 142)(8 143)(9 144)(10 145)(11 146)(12 147)(13 148)(14 149)(15 150)(16 151)(17 152)(18 153)(19 154)(20 155)(21 156)(22 157)(23 158)(24 159)(25 160)(26 81)(27 82)(28 83)(29 84)(30 85)(31 86)(32 87)(33 88)(34 89)(35 90)(36 91)(37 92)(38 93)(39 94)(40 95)(41 96)(42 97)(43 98)(44 99)(45 100)(46 101)(47 102)(48 103)(49 104)(50 105)(51 106)(52 107)(53 108)(54 109)(55 110)(56 111)(57 112)(58 113)(59 114)(60 115)(61 116)(62 117)(63 118)(64 119)(65 120)(66 121)(67 122)(68 123)(69 124)(70 125)(71 126)(72 127)(73 128)(74 129)(75 130)(76 131)(77 132)(78 133)(79 134)(80 135)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,80)(17,79)(18,78)(19,77)(20,76)(21,75)(22,74)(23,73)(24,72)(25,71)(26,70)(27,69)(28,68)(29,67)(30,66)(31,65)(32,64)(33,63)(34,62)(35,61)(36,60)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(81,85)(82,84)(86,160)(87,159)(88,158)(89,157)(90,156)(91,155)(92,154)(93,153)(94,152)(95,151)(96,150)(97,149)(98,148)(99,147)(100,146)(101,145)(102,144)(103,143)(104,142)(105,141)(106,140)(107,139)(108,138)(109,137)(110,136)(111,135)(112,134)(113,133)(114,132)(115,131)(116,130)(117,129)(118,128)(119,127)(120,126)(121,125)(122,124), (1,136)(2,137)(3,138)(4,139)(5,140)(6,141)(7,142)(8,143)(9,144)(10,145)(11,146)(12,147)(13,148)(14,149)(15,150)(16,151)(17,152)(18,153)(19,154)(20,155)(21,156)(22,157)(23,158)(24,159)(25,160)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)(61,116)(62,117)(63,118)(64,119)(65,120)(66,121)(67,122)(68,123)(69,124)(70,125)(71,126)(72,127)(73,128)(74,129)(75,130)(76,131)(77,132)(78,133)(79,134)(80,135)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,80)(17,79)(18,78)(19,77)(20,76)(21,75)(22,74)(23,73)(24,72)(25,71)(26,70)(27,69)(28,68)(29,67)(30,66)(31,65)(32,64)(33,63)(34,62)(35,61)(36,60)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(81,85)(82,84)(86,160)(87,159)(88,158)(89,157)(90,156)(91,155)(92,154)(93,153)(94,152)(95,151)(96,150)(97,149)(98,148)(99,147)(100,146)(101,145)(102,144)(103,143)(104,142)(105,141)(106,140)(107,139)(108,138)(109,137)(110,136)(111,135)(112,134)(113,133)(114,132)(115,131)(116,130)(117,129)(118,128)(119,127)(120,126)(121,125)(122,124), (1,136)(2,137)(3,138)(4,139)(5,140)(6,141)(7,142)(8,143)(9,144)(10,145)(11,146)(12,147)(13,148)(14,149)(15,150)(16,151)(17,152)(18,153)(19,154)(20,155)(21,156)(22,157)(23,158)(24,159)(25,160)(26,81)(27,82)(28,83)(29,84)(30,85)(31,86)(32,87)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)(61,116)(62,117)(63,118)(64,119)(65,120)(66,121)(67,122)(68,123)(69,124)(70,125)(71,126)(72,127)(73,128)(74,129)(75,130)(76,131)(77,132)(78,133)(79,134)(80,135) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,80),(17,79),(18,78),(19,77),(20,76),(21,75),(22,74),(23,73),(24,72),(25,71),(26,70),(27,69),(28,68),(29,67),(30,66),(31,65),(32,64),(33,63),(34,62),(35,61),(36,60),(37,59),(38,58),(39,57),(40,56),(41,55),(42,54),(43,53),(44,52),(45,51),(46,50),(47,49),(81,85),(82,84),(86,160),(87,159),(88,158),(89,157),(90,156),(91,155),(92,154),(93,153),(94,152),(95,151),(96,150),(97,149),(98,148),(99,147),(100,146),(101,145),(102,144),(103,143),(104,142),(105,141),(106,140),(107,139),(108,138),(109,137),(110,136),(111,135),(112,134),(113,133),(114,132),(115,131),(116,130),(117,129),(118,128),(119,127),(120,126),(121,125),(122,124)], [(1,136),(2,137),(3,138),(4,139),(5,140),(6,141),(7,142),(8,143),(9,144),(10,145),(11,146),(12,147),(13,148),(14,149),(15,150),(16,151),(17,152),(18,153),(19,154),(20,155),(21,156),(22,157),(23,158),(24,159),(25,160),(26,81),(27,82),(28,83),(29,84),(30,85),(31,86),(32,87),(33,88),(34,89),(35,90),(36,91),(37,92),(38,93),(39,94),(40,95),(41,96),(42,97),(43,98),(44,99),(45,100),(46,101),(47,102),(48,103),(49,104),(50,105),(51,106),(52,107),(53,108),(54,109),(55,110),(56,111),(57,112),(58,113),(59,114),(60,115),(61,116),(62,117),(63,118),(64,119),(65,120),(66,121),(67,122),(68,123),(69,124),(70,125),(71,126),(72,127),(73,128),(74,129),(75,130),(76,131),(77,132),(78,133),(79,134),(80,135)]])
86 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 16A | ··· | 16H | 20A | ··· | 20H | 40A | ··· | 40P | 80A | ··· | 80AF |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 16 | ··· | 16 | 20 | ··· | 20 | 40 | ··· | 40 | 80 | ··· | 80 |
size | 1 | 1 | 2 | 40 | 40 | 1 | 1 | 2 | 40 | 40 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
86 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | D8 | D8 | D10 | D10 | D20 | D20 | C4○D16 | D40 | D40 | D80⋊7C2 |
kernel | D80⋊7C2 | D80 | C16⋊D5 | Dic40 | C2×C80 | D40⋊7C2 | C40 | C2×C20 | C2×C16 | C20 | C2×C10 | C16 | C2×C8 | C8 | C2×C4 | C5 | C4 | C22 | C1 |
# reps | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 8 | 8 | 8 | 32 |
Matrix representation of D80⋊7C2 ►in GL2(𝔽241) generated by
175 | 173 |
68 | 81 |
56 | 9 |
214 | 185 |
76 | 49 |
192 | 165 |
G:=sub<GL(2,GF(241))| [175,68,173,81],[56,214,9,185],[76,192,49,165] >;
D80⋊7C2 in GAP, Magma, Sage, TeX
D_{80}\rtimes_7C_2
% in TeX
G:=Group("D80:7C2");
// GroupNames label
G:=SmallGroup(320,531);
// by ID
G=gap.SmallGroup(320,531);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,254,142,675,192,1684,102,12550]);
// Polycyclic
G:=Group<a,b,c|a^80=b^2=c^2=1,b*a*b=a^-1,a*c=c*a,c*b*c=a^40*b>;
// generators/relations