Copied to
clipboard

G = C2×C16⋊D5order 320 = 26·5

Direct product of C2 and C16⋊D5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C16⋊D5, C168D10, C4.7D40, C809C22, C101SD32, C20.32D8, C40.61D4, C8.11D20, C40.56C23, D40.6C22, C22.13D40, Dic206C22, (C2×C16)⋊7D5, C51(C2×SD32), (C2×C80)⋊11C2, (C2×D40).5C2, C2.12(C2×D40), C4.37(C2×D20), (C2×C4).84D20, C10.10(C2×D8), (C2×C10).19D8, (C2×Dic20)⋊8C2, (C2×C8).304D10, C20.280(C2×D4), (C2×C20).381D4, C8.46(C22×D5), (C2×C40).377C22, SmallGroup(320,530)

Series: Derived Chief Lower central Upper central

C1C40 — C2×C16⋊D5
C1C5C10C20C40D40C2×D40 — C2×C16⋊D5
C5C10C20C40 — C2×C16⋊D5
C1C22C2×C4C2×C8C2×C16

Generators and relations for C2×C16⋊D5
 G = < a,b,c,d | a2=b16=c5=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b7, dcd=c-1 >

Subgroups: 574 in 90 conjugacy classes, 39 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C16, C2×C8, D8, Q16, C2×D4, C2×Q8, Dic5, C20, D10, C2×C10, C2×C16, SD32, C2×D8, C2×Q16, C40, Dic10, D20, C2×Dic5, C2×C20, C22×D5, C2×SD32, C80, D40, D40, Dic20, Dic20, C2×C40, C2×Dic10, C2×D20, C16⋊D5, C2×C80, C2×D40, C2×Dic20, C2×C16⋊D5
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, SD32, C2×D8, D20, C22×D5, C2×SD32, D40, C2×D20, C16⋊D5, C2×D40, C2×C16⋊D5

Smallest permutation representation of C2×C16⋊D5
On 160 points
Generators in S160
(1 150)(2 151)(3 152)(4 153)(5 154)(6 155)(7 156)(8 157)(9 158)(10 159)(11 160)(12 145)(13 146)(14 147)(15 148)(16 149)(17 68)(18 69)(19 70)(20 71)(21 72)(22 73)(23 74)(24 75)(25 76)(26 77)(27 78)(28 79)(29 80)(30 65)(31 66)(32 67)(33 88)(34 89)(35 90)(36 91)(37 92)(38 93)(39 94)(40 95)(41 96)(42 81)(43 82)(44 83)(45 84)(46 85)(47 86)(48 87)(49 123)(50 124)(51 125)(52 126)(53 127)(54 128)(55 113)(56 114)(57 115)(58 116)(59 117)(60 118)(61 119)(62 120)(63 121)(64 122)(97 140)(98 141)(99 142)(100 143)(101 144)(102 129)(103 130)(104 131)(105 132)(106 133)(107 134)(108 135)(109 136)(110 137)(111 138)(112 139)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 33 62 103 20)(2 34 63 104 21)(3 35 64 105 22)(4 36 49 106 23)(5 37 50 107 24)(6 38 51 108 25)(7 39 52 109 26)(8 40 53 110 27)(9 41 54 111 28)(10 42 55 112 29)(11 43 56 97 30)(12 44 57 98 31)(13 45 58 99 32)(14 46 59 100 17)(15 47 60 101 18)(16 48 61 102 19)(65 160 82 114 140)(66 145 83 115 141)(67 146 84 116 142)(68 147 85 117 143)(69 148 86 118 144)(70 149 87 119 129)(71 150 88 120 130)(72 151 89 121 131)(73 152 90 122 132)(74 153 91 123 133)(75 154 92 124 134)(76 155 93 125 135)(77 156 94 126 136)(78 157 95 127 137)(79 158 96 128 138)(80 159 81 113 139)
(1 71)(2 78)(3 69)(4 76)(5 67)(6 74)(7 65)(8 72)(9 79)(10 70)(11 77)(12 68)(13 75)(14 66)(15 73)(16 80)(17 145)(18 152)(19 159)(20 150)(21 157)(22 148)(23 155)(24 146)(25 153)(26 160)(27 151)(28 158)(29 149)(30 156)(31 147)(32 154)(33 130)(34 137)(35 144)(36 135)(37 142)(38 133)(39 140)(40 131)(41 138)(42 129)(43 136)(44 143)(45 134)(46 141)(47 132)(48 139)(49 125)(50 116)(51 123)(52 114)(53 121)(54 128)(55 119)(56 126)(57 117)(58 124)(59 115)(60 122)(61 113)(62 120)(63 127)(64 118)(81 102)(82 109)(83 100)(84 107)(85 98)(86 105)(87 112)(88 103)(89 110)(90 101)(91 108)(92 99)(93 106)(94 97)(95 104)(96 111)

G:=sub<Sym(160)| (1,150)(2,151)(3,152)(4,153)(5,154)(6,155)(7,156)(8,157)(9,158)(10,159)(11,160)(12,145)(13,146)(14,147)(15,148)(16,149)(17,68)(18,69)(19,70)(20,71)(21,72)(22,73)(23,74)(24,75)(25,76)(26,77)(27,78)(28,79)(29,80)(30,65)(31,66)(32,67)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,81)(43,82)(44,83)(45,84)(46,85)(47,86)(48,87)(49,123)(50,124)(51,125)(52,126)(53,127)(54,128)(55,113)(56,114)(57,115)(58,116)(59,117)(60,118)(61,119)(62,120)(63,121)(64,122)(97,140)(98,141)(99,142)(100,143)(101,144)(102,129)(103,130)(104,131)(105,132)(106,133)(107,134)(108,135)(109,136)(110,137)(111,138)(112,139), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,33,62,103,20)(2,34,63,104,21)(3,35,64,105,22)(4,36,49,106,23)(5,37,50,107,24)(6,38,51,108,25)(7,39,52,109,26)(8,40,53,110,27)(9,41,54,111,28)(10,42,55,112,29)(11,43,56,97,30)(12,44,57,98,31)(13,45,58,99,32)(14,46,59,100,17)(15,47,60,101,18)(16,48,61,102,19)(65,160,82,114,140)(66,145,83,115,141)(67,146,84,116,142)(68,147,85,117,143)(69,148,86,118,144)(70,149,87,119,129)(71,150,88,120,130)(72,151,89,121,131)(73,152,90,122,132)(74,153,91,123,133)(75,154,92,124,134)(76,155,93,125,135)(77,156,94,126,136)(78,157,95,127,137)(79,158,96,128,138)(80,159,81,113,139), (1,71)(2,78)(3,69)(4,76)(5,67)(6,74)(7,65)(8,72)(9,79)(10,70)(11,77)(12,68)(13,75)(14,66)(15,73)(16,80)(17,145)(18,152)(19,159)(20,150)(21,157)(22,148)(23,155)(24,146)(25,153)(26,160)(27,151)(28,158)(29,149)(30,156)(31,147)(32,154)(33,130)(34,137)(35,144)(36,135)(37,142)(38,133)(39,140)(40,131)(41,138)(42,129)(43,136)(44,143)(45,134)(46,141)(47,132)(48,139)(49,125)(50,116)(51,123)(52,114)(53,121)(54,128)(55,119)(56,126)(57,117)(58,124)(59,115)(60,122)(61,113)(62,120)(63,127)(64,118)(81,102)(82,109)(83,100)(84,107)(85,98)(86,105)(87,112)(88,103)(89,110)(90,101)(91,108)(92,99)(93,106)(94,97)(95,104)(96,111)>;

G:=Group( (1,150)(2,151)(3,152)(4,153)(5,154)(6,155)(7,156)(8,157)(9,158)(10,159)(11,160)(12,145)(13,146)(14,147)(15,148)(16,149)(17,68)(18,69)(19,70)(20,71)(21,72)(22,73)(23,74)(24,75)(25,76)(26,77)(27,78)(28,79)(29,80)(30,65)(31,66)(32,67)(33,88)(34,89)(35,90)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,81)(43,82)(44,83)(45,84)(46,85)(47,86)(48,87)(49,123)(50,124)(51,125)(52,126)(53,127)(54,128)(55,113)(56,114)(57,115)(58,116)(59,117)(60,118)(61,119)(62,120)(63,121)(64,122)(97,140)(98,141)(99,142)(100,143)(101,144)(102,129)(103,130)(104,131)(105,132)(106,133)(107,134)(108,135)(109,136)(110,137)(111,138)(112,139), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,33,62,103,20)(2,34,63,104,21)(3,35,64,105,22)(4,36,49,106,23)(5,37,50,107,24)(6,38,51,108,25)(7,39,52,109,26)(8,40,53,110,27)(9,41,54,111,28)(10,42,55,112,29)(11,43,56,97,30)(12,44,57,98,31)(13,45,58,99,32)(14,46,59,100,17)(15,47,60,101,18)(16,48,61,102,19)(65,160,82,114,140)(66,145,83,115,141)(67,146,84,116,142)(68,147,85,117,143)(69,148,86,118,144)(70,149,87,119,129)(71,150,88,120,130)(72,151,89,121,131)(73,152,90,122,132)(74,153,91,123,133)(75,154,92,124,134)(76,155,93,125,135)(77,156,94,126,136)(78,157,95,127,137)(79,158,96,128,138)(80,159,81,113,139), (1,71)(2,78)(3,69)(4,76)(5,67)(6,74)(7,65)(8,72)(9,79)(10,70)(11,77)(12,68)(13,75)(14,66)(15,73)(16,80)(17,145)(18,152)(19,159)(20,150)(21,157)(22,148)(23,155)(24,146)(25,153)(26,160)(27,151)(28,158)(29,149)(30,156)(31,147)(32,154)(33,130)(34,137)(35,144)(36,135)(37,142)(38,133)(39,140)(40,131)(41,138)(42,129)(43,136)(44,143)(45,134)(46,141)(47,132)(48,139)(49,125)(50,116)(51,123)(52,114)(53,121)(54,128)(55,119)(56,126)(57,117)(58,124)(59,115)(60,122)(61,113)(62,120)(63,127)(64,118)(81,102)(82,109)(83,100)(84,107)(85,98)(86,105)(87,112)(88,103)(89,110)(90,101)(91,108)(92,99)(93,106)(94,97)(95,104)(96,111) );

G=PermutationGroup([[(1,150),(2,151),(3,152),(4,153),(5,154),(6,155),(7,156),(8,157),(9,158),(10,159),(11,160),(12,145),(13,146),(14,147),(15,148),(16,149),(17,68),(18,69),(19,70),(20,71),(21,72),(22,73),(23,74),(24,75),(25,76),(26,77),(27,78),(28,79),(29,80),(30,65),(31,66),(32,67),(33,88),(34,89),(35,90),(36,91),(37,92),(38,93),(39,94),(40,95),(41,96),(42,81),(43,82),(44,83),(45,84),(46,85),(47,86),(48,87),(49,123),(50,124),(51,125),(52,126),(53,127),(54,128),(55,113),(56,114),(57,115),(58,116),(59,117),(60,118),(61,119),(62,120),(63,121),(64,122),(97,140),(98,141),(99,142),(100,143),(101,144),(102,129),(103,130),(104,131),(105,132),(106,133),(107,134),(108,135),(109,136),(110,137),(111,138),(112,139)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,33,62,103,20),(2,34,63,104,21),(3,35,64,105,22),(4,36,49,106,23),(5,37,50,107,24),(6,38,51,108,25),(7,39,52,109,26),(8,40,53,110,27),(9,41,54,111,28),(10,42,55,112,29),(11,43,56,97,30),(12,44,57,98,31),(13,45,58,99,32),(14,46,59,100,17),(15,47,60,101,18),(16,48,61,102,19),(65,160,82,114,140),(66,145,83,115,141),(67,146,84,116,142),(68,147,85,117,143),(69,148,86,118,144),(70,149,87,119,129),(71,150,88,120,130),(72,151,89,121,131),(73,152,90,122,132),(74,153,91,123,133),(75,154,92,124,134),(76,155,93,125,135),(77,156,94,126,136),(78,157,95,127,137),(79,158,96,128,138),(80,159,81,113,139)], [(1,71),(2,78),(3,69),(4,76),(5,67),(6,74),(7,65),(8,72),(9,79),(10,70),(11,77),(12,68),(13,75),(14,66),(15,73),(16,80),(17,145),(18,152),(19,159),(20,150),(21,157),(22,148),(23,155),(24,146),(25,153),(26,160),(27,151),(28,158),(29,149),(30,156),(31,147),(32,154),(33,130),(34,137),(35,144),(36,135),(37,142),(38,133),(39,140),(40,131),(41,138),(42,129),(43,136),(44,143),(45,134),(46,141),(47,132),(48,139),(49,125),(50,116),(51,123),(52,114),(53,121),(54,128),(55,119),(56,126),(57,117),(58,124),(59,115),(60,122),(61,113),(62,120),(63,127),(64,118),(81,102),(82,109),(83,100),(84,107),(85,98),(86,105),(87,112),(88,103),(89,110),(90,101),(91,108),(92,99),(93,106),(94,97),(95,104),(96,111)]])

86 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D5A5B8A8B8C8D10A···10F16A···16H20A···20H40A···40P80A···80AF
order122222444455888810···1016···1620···2040···4080···80
size111140402240402222222···22···22···22···22···2

86 irreducible representations

dim111112222222222222
type++++++++++++++++
imageC1C2C2C2C2D4D4D5D8D8D10D10SD32D20D20D40D40C16⋊D5
kernelC2×C16⋊D5C16⋊D5C2×C80C2×D40C2×Dic20C40C2×C20C2×C16C20C2×C10C16C2×C8C10C8C2×C4C4C22C2
# reps1411111222428448832

Matrix representation of C2×C16⋊D5 in GL3(𝔽241) generated by

24000
02400
00240
,
24000
0220130
0234227
,
100
0190240
0191240
,
100
00189
01900
G:=sub<GL(3,GF(241))| [240,0,0,0,240,0,0,0,240],[240,0,0,0,220,234,0,130,227],[1,0,0,0,190,191,0,240,240],[1,0,0,0,0,190,0,189,0] >;

C2×C16⋊D5 in GAP, Magma, Sage, TeX

C_2\times C_{16}\rtimes D_5
% in TeX

G:=Group("C2xC16:D5");
// GroupNames label

G:=SmallGroup(320,530);
// by ID

G=gap.SmallGroup(320,530);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,254,142,1571,80,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^16=c^5=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^7,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽