Copied to
clipboard

G = C2×D80order 320 = 26·5

Direct product of C2 and D80

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D80, C101D16, C167D10, C4.6D40, C808C22, C40.60D4, C8.10D20, C20.31D8, D407C22, C40.55C23, C22.12D40, C51(C2×D16), (C2×C80)⋊9C2, (C2×C16)⋊5D5, (C2×D40)⋊8C2, C10.9(C2×D8), (C2×C10).18D8, C2.11(C2×D40), C4.36(C2×D20), (C2×C4).83D20, (C2×C20).380D4, C20.279(C2×D4), (C2×C8).303D10, C8.45(C22×D5), (C2×C40).376C22, SmallGroup(320,529)

Series: Derived Chief Lower central Upper central

C1C40 — C2×D80
C1C5C10C20C40D40C2×D40 — C2×D80
C5C10C20C40 — C2×D80
C1C22C2×C4C2×C8C2×C16

Generators and relations for C2×D80
 G = < a,b,c | a2=b80=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 766 in 98 conjugacy classes, 39 normal (21 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C8, C2×C4, D4, C23, D5, C10, C10, C16, C2×C8, D8, C2×D4, C20, D10, C2×C10, C2×C16, D16, C2×D8, C40, D20, C2×C20, C22×D5, C2×D16, C80, D40, D40, C2×C40, C2×D20, D80, C2×C80, C2×D40, C2×D80
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, D16, C2×D8, D20, C22×D5, C2×D16, D40, C2×D20, D80, C2×D40, C2×D80

Smallest permutation representation of C2×D80
On 160 points
Generators in S160
(1 89)(2 90)(3 91)(4 92)(5 93)(6 94)(7 95)(8 96)(9 97)(10 98)(11 99)(12 100)(13 101)(14 102)(15 103)(16 104)(17 105)(18 106)(19 107)(20 108)(21 109)(22 110)(23 111)(24 112)(25 113)(26 114)(27 115)(28 116)(29 117)(30 118)(31 119)(32 120)(33 121)(34 122)(35 123)(36 124)(37 125)(38 126)(39 127)(40 128)(41 129)(42 130)(43 131)(44 132)(45 133)(46 134)(47 135)(48 136)(49 137)(50 138)(51 139)(52 140)(53 141)(54 142)(55 143)(56 144)(57 145)(58 146)(59 147)(60 148)(61 149)(62 150)(63 151)(64 152)(65 153)(66 154)(67 155)(68 156)(69 157)(70 158)(71 159)(72 160)(73 81)(74 82)(75 83)(76 84)(77 85)(78 86)(79 87)(80 88)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 88)(2 87)(3 86)(4 85)(5 84)(6 83)(7 82)(8 81)(9 160)(10 159)(11 158)(12 157)(13 156)(14 155)(15 154)(16 153)(17 152)(18 151)(19 150)(20 149)(21 148)(22 147)(23 146)(24 145)(25 144)(26 143)(27 142)(28 141)(29 140)(30 139)(31 138)(32 137)(33 136)(34 135)(35 134)(36 133)(37 132)(38 131)(39 130)(40 129)(41 128)(42 127)(43 126)(44 125)(45 124)(46 123)(47 122)(48 121)(49 120)(50 119)(51 118)(52 117)(53 116)(54 115)(55 114)(56 113)(57 112)(58 111)(59 110)(60 109)(61 108)(62 107)(63 106)(64 105)(65 104)(66 103)(67 102)(68 101)(69 100)(70 99)(71 98)(72 97)(73 96)(74 95)(75 94)(76 93)(77 92)(78 91)(79 90)(80 89)

G:=sub<Sym(160)| (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,97)(10,98)(11,99)(12,100)(13,101)(14,102)(15,103)(16,104)(17,105)(18,106)(19,107)(20,108)(21,109)(22,110)(23,111)(24,112)(25,113)(26,114)(27,115)(28,116)(29,117)(30,118)(31,119)(32,120)(33,121)(34,122)(35,123)(36,124)(37,125)(38,126)(39,127)(40,128)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(49,137)(50,138)(51,139)(52,140)(53,141)(54,142)(55,143)(56,144)(57,145)(58,146)(59,147)(60,148)(61,149)(62,150)(63,151)(64,152)(65,153)(66,154)(67,155)(68,156)(69,157)(70,158)(71,159)(72,160)(73,81)(74,82)(75,83)(76,84)(77,85)(78,86)(79,87)(80,88), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,88)(2,87)(3,86)(4,85)(5,84)(6,83)(7,82)(8,81)(9,160)(10,159)(11,158)(12,157)(13,156)(14,155)(15,154)(16,153)(17,152)(18,151)(19,150)(20,149)(21,148)(22,147)(23,146)(24,145)(25,144)(26,143)(27,142)(28,141)(29,140)(30,139)(31,138)(32,137)(33,136)(34,135)(35,134)(36,133)(37,132)(38,131)(39,130)(40,129)(41,128)(42,127)(43,126)(44,125)(45,124)(46,123)(47,122)(48,121)(49,120)(50,119)(51,118)(52,117)(53,116)(54,115)(55,114)(56,113)(57,112)(58,111)(59,110)(60,109)(61,108)(62,107)(63,106)(64,105)(65,104)(66,103)(67,102)(68,101)(69,100)(70,99)(71,98)(72,97)(73,96)(74,95)(75,94)(76,93)(77,92)(78,91)(79,90)(80,89)>;

G:=Group( (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,97)(10,98)(11,99)(12,100)(13,101)(14,102)(15,103)(16,104)(17,105)(18,106)(19,107)(20,108)(21,109)(22,110)(23,111)(24,112)(25,113)(26,114)(27,115)(28,116)(29,117)(30,118)(31,119)(32,120)(33,121)(34,122)(35,123)(36,124)(37,125)(38,126)(39,127)(40,128)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(49,137)(50,138)(51,139)(52,140)(53,141)(54,142)(55,143)(56,144)(57,145)(58,146)(59,147)(60,148)(61,149)(62,150)(63,151)(64,152)(65,153)(66,154)(67,155)(68,156)(69,157)(70,158)(71,159)(72,160)(73,81)(74,82)(75,83)(76,84)(77,85)(78,86)(79,87)(80,88), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,88)(2,87)(3,86)(4,85)(5,84)(6,83)(7,82)(8,81)(9,160)(10,159)(11,158)(12,157)(13,156)(14,155)(15,154)(16,153)(17,152)(18,151)(19,150)(20,149)(21,148)(22,147)(23,146)(24,145)(25,144)(26,143)(27,142)(28,141)(29,140)(30,139)(31,138)(32,137)(33,136)(34,135)(35,134)(36,133)(37,132)(38,131)(39,130)(40,129)(41,128)(42,127)(43,126)(44,125)(45,124)(46,123)(47,122)(48,121)(49,120)(50,119)(51,118)(52,117)(53,116)(54,115)(55,114)(56,113)(57,112)(58,111)(59,110)(60,109)(61,108)(62,107)(63,106)(64,105)(65,104)(66,103)(67,102)(68,101)(69,100)(70,99)(71,98)(72,97)(73,96)(74,95)(75,94)(76,93)(77,92)(78,91)(79,90)(80,89) );

G=PermutationGroup([[(1,89),(2,90),(3,91),(4,92),(5,93),(6,94),(7,95),(8,96),(9,97),(10,98),(11,99),(12,100),(13,101),(14,102),(15,103),(16,104),(17,105),(18,106),(19,107),(20,108),(21,109),(22,110),(23,111),(24,112),(25,113),(26,114),(27,115),(28,116),(29,117),(30,118),(31,119),(32,120),(33,121),(34,122),(35,123),(36,124),(37,125),(38,126),(39,127),(40,128),(41,129),(42,130),(43,131),(44,132),(45,133),(46,134),(47,135),(48,136),(49,137),(50,138),(51,139),(52,140),(53,141),(54,142),(55,143),(56,144),(57,145),(58,146),(59,147),(60,148),(61,149),(62,150),(63,151),(64,152),(65,153),(66,154),(67,155),(68,156),(69,157),(70,158),(71,159),(72,160),(73,81),(74,82),(75,83),(76,84),(77,85),(78,86),(79,87),(80,88)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,88),(2,87),(3,86),(4,85),(5,84),(6,83),(7,82),(8,81),(9,160),(10,159),(11,158),(12,157),(13,156),(14,155),(15,154),(16,153),(17,152),(18,151),(19,150),(20,149),(21,148),(22,147),(23,146),(24,145),(25,144),(26,143),(27,142),(28,141),(29,140),(30,139),(31,138),(32,137),(33,136),(34,135),(35,134),(36,133),(37,132),(38,131),(39,130),(40,129),(41,128),(42,127),(43,126),(44,125),(45,124),(46,123),(47,122),(48,121),(49,120),(50,119),(51,118),(52,117),(53,116),(54,115),(55,114),(56,113),(57,112),(58,111),(59,110),(60,109),(61,108),(62,107),(63,106),(64,105),(65,104),(66,103),(67,102),(68,101),(69,100),(70,99),(71,98),(72,97),(73,96),(74,95),(75,94),(76,93),(77,92),(78,91),(79,90),(80,89)]])

86 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B5A5B8A8B8C8D10A···10F16A···16H20A···20H40A···40P80A···80AF
order122222224455888810···1016···1620···2040···4080···80
size111140404040222222222···22···22···22···22···2

86 irreducible representations

dim11112222222222222
type+++++++++++++++++
imageC1C2C2C2D4D4D5D8D8D10D10D16D20D20D40D40D80
kernelC2×D80D80C2×C80C2×D40C40C2×C20C2×C16C20C2×C10C16C2×C8C10C8C2×C4C4C22C2
# reps141211222428448832

Matrix representation of C2×D80 in GL3(𝔽241) generated by

24000
010
001
,
24000
012613
022879
,
24000
0258
0162239
G:=sub<GL(3,GF(241))| [240,0,0,0,1,0,0,0,1],[240,0,0,0,126,228,0,13,79],[240,0,0,0,2,162,0,58,239] >;

C2×D80 in GAP, Magma, Sage, TeX

C_2\times D_{80}
% in TeX

G:=Group("C2xD80");
// GroupNames label

G:=SmallGroup(320,529);
// by ID

G=gap.SmallGroup(320,529);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,254,142,675,192,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^2=b^80=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽