direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D80, C10⋊1D16, C16⋊7D10, C4.6D40, C80⋊8C22, C40.60D4, C8.10D20, C20.31D8, D40⋊7C22, C40.55C23, C22.12D40, C5⋊1(C2×D16), (C2×C80)⋊9C2, (C2×C16)⋊5D5, (C2×D40)⋊8C2, C10.9(C2×D8), (C2×C10).18D8, C2.11(C2×D40), C4.36(C2×D20), (C2×C4).83D20, (C2×C20).380D4, C20.279(C2×D4), (C2×C8).303D10, C8.45(C22×D5), (C2×C40).376C22, SmallGroup(320,529)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D80
G = < a,b,c | a2=b80=c2=1, ab=ba, ac=ca, cbc=b-1 >
Subgroups: 766 in 98 conjugacy classes, 39 normal (21 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C8, C2×C4, D4, C23, D5, C10, C10, C16, C2×C8, D8, C2×D4, C20, D10, C2×C10, C2×C16, D16, C2×D8, C40, D20, C2×C20, C22×D5, C2×D16, C80, D40, D40, C2×C40, C2×D20, D80, C2×C80, C2×D40, C2×D80
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, D16, C2×D8, D20, C22×D5, C2×D16, D40, C2×D20, D80, C2×D40, C2×D80
(1 89)(2 90)(3 91)(4 92)(5 93)(6 94)(7 95)(8 96)(9 97)(10 98)(11 99)(12 100)(13 101)(14 102)(15 103)(16 104)(17 105)(18 106)(19 107)(20 108)(21 109)(22 110)(23 111)(24 112)(25 113)(26 114)(27 115)(28 116)(29 117)(30 118)(31 119)(32 120)(33 121)(34 122)(35 123)(36 124)(37 125)(38 126)(39 127)(40 128)(41 129)(42 130)(43 131)(44 132)(45 133)(46 134)(47 135)(48 136)(49 137)(50 138)(51 139)(52 140)(53 141)(54 142)(55 143)(56 144)(57 145)(58 146)(59 147)(60 148)(61 149)(62 150)(63 151)(64 152)(65 153)(66 154)(67 155)(68 156)(69 157)(70 158)(71 159)(72 160)(73 81)(74 82)(75 83)(76 84)(77 85)(78 86)(79 87)(80 88)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 88)(2 87)(3 86)(4 85)(5 84)(6 83)(7 82)(8 81)(9 160)(10 159)(11 158)(12 157)(13 156)(14 155)(15 154)(16 153)(17 152)(18 151)(19 150)(20 149)(21 148)(22 147)(23 146)(24 145)(25 144)(26 143)(27 142)(28 141)(29 140)(30 139)(31 138)(32 137)(33 136)(34 135)(35 134)(36 133)(37 132)(38 131)(39 130)(40 129)(41 128)(42 127)(43 126)(44 125)(45 124)(46 123)(47 122)(48 121)(49 120)(50 119)(51 118)(52 117)(53 116)(54 115)(55 114)(56 113)(57 112)(58 111)(59 110)(60 109)(61 108)(62 107)(63 106)(64 105)(65 104)(66 103)(67 102)(68 101)(69 100)(70 99)(71 98)(72 97)(73 96)(74 95)(75 94)(76 93)(77 92)(78 91)(79 90)(80 89)
G:=sub<Sym(160)| (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,97)(10,98)(11,99)(12,100)(13,101)(14,102)(15,103)(16,104)(17,105)(18,106)(19,107)(20,108)(21,109)(22,110)(23,111)(24,112)(25,113)(26,114)(27,115)(28,116)(29,117)(30,118)(31,119)(32,120)(33,121)(34,122)(35,123)(36,124)(37,125)(38,126)(39,127)(40,128)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(49,137)(50,138)(51,139)(52,140)(53,141)(54,142)(55,143)(56,144)(57,145)(58,146)(59,147)(60,148)(61,149)(62,150)(63,151)(64,152)(65,153)(66,154)(67,155)(68,156)(69,157)(70,158)(71,159)(72,160)(73,81)(74,82)(75,83)(76,84)(77,85)(78,86)(79,87)(80,88), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,88)(2,87)(3,86)(4,85)(5,84)(6,83)(7,82)(8,81)(9,160)(10,159)(11,158)(12,157)(13,156)(14,155)(15,154)(16,153)(17,152)(18,151)(19,150)(20,149)(21,148)(22,147)(23,146)(24,145)(25,144)(26,143)(27,142)(28,141)(29,140)(30,139)(31,138)(32,137)(33,136)(34,135)(35,134)(36,133)(37,132)(38,131)(39,130)(40,129)(41,128)(42,127)(43,126)(44,125)(45,124)(46,123)(47,122)(48,121)(49,120)(50,119)(51,118)(52,117)(53,116)(54,115)(55,114)(56,113)(57,112)(58,111)(59,110)(60,109)(61,108)(62,107)(63,106)(64,105)(65,104)(66,103)(67,102)(68,101)(69,100)(70,99)(71,98)(72,97)(73,96)(74,95)(75,94)(76,93)(77,92)(78,91)(79,90)(80,89)>;
G:=Group( (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,97)(10,98)(11,99)(12,100)(13,101)(14,102)(15,103)(16,104)(17,105)(18,106)(19,107)(20,108)(21,109)(22,110)(23,111)(24,112)(25,113)(26,114)(27,115)(28,116)(29,117)(30,118)(31,119)(32,120)(33,121)(34,122)(35,123)(36,124)(37,125)(38,126)(39,127)(40,128)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(49,137)(50,138)(51,139)(52,140)(53,141)(54,142)(55,143)(56,144)(57,145)(58,146)(59,147)(60,148)(61,149)(62,150)(63,151)(64,152)(65,153)(66,154)(67,155)(68,156)(69,157)(70,158)(71,159)(72,160)(73,81)(74,82)(75,83)(76,84)(77,85)(78,86)(79,87)(80,88), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,88)(2,87)(3,86)(4,85)(5,84)(6,83)(7,82)(8,81)(9,160)(10,159)(11,158)(12,157)(13,156)(14,155)(15,154)(16,153)(17,152)(18,151)(19,150)(20,149)(21,148)(22,147)(23,146)(24,145)(25,144)(26,143)(27,142)(28,141)(29,140)(30,139)(31,138)(32,137)(33,136)(34,135)(35,134)(36,133)(37,132)(38,131)(39,130)(40,129)(41,128)(42,127)(43,126)(44,125)(45,124)(46,123)(47,122)(48,121)(49,120)(50,119)(51,118)(52,117)(53,116)(54,115)(55,114)(56,113)(57,112)(58,111)(59,110)(60,109)(61,108)(62,107)(63,106)(64,105)(65,104)(66,103)(67,102)(68,101)(69,100)(70,99)(71,98)(72,97)(73,96)(74,95)(75,94)(76,93)(77,92)(78,91)(79,90)(80,89) );
G=PermutationGroup([[(1,89),(2,90),(3,91),(4,92),(5,93),(6,94),(7,95),(8,96),(9,97),(10,98),(11,99),(12,100),(13,101),(14,102),(15,103),(16,104),(17,105),(18,106),(19,107),(20,108),(21,109),(22,110),(23,111),(24,112),(25,113),(26,114),(27,115),(28,116),(29,117),(30,118),(31,119),(32,120),(33,121),(34,122),(35,123),(36,124),(37,125),(38,126),(39,127),(40,128),(41,129),(42,130),(43,131),(44,132),(45,133),(46,134),(47,135),(48,136),(49,137),(50,138),(51,139),(52,140),(53,141),(54,142),(55,143),(56,144),(57,145),(58,146),(59,147),(60,148),(61,149),(62,150),(63,151),(64,152),(65,153),(66,154),(67,155),(68,156),(69,157),(70,158),(71,159),(72,160),(73,81),(74,82),(75,83),(76,84),(77,85),(78,86),(79,87),(80,88)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,88),(2,87),(3,86),(4,85),(5,84),(6,83),(7,82),(8,81),(9,160),(10,159),(11,158),(12,157),(13,156),(14,155),(15,154),(16,153),(17,152),(18,151),(19,150),(20,149),(21,148),(22,147),(23,146),(24,145),(25,144),(26,143),(27,142),(28,141),(29,140),(30,139),(31,138),(32,137),(33,136),(34,135),(35,134),(36,133),(37,132),(38,131),(39,130),(40,129),(41,128),(42,127),(43,126),(44,125),(45,124),(46,123),(47,122),(48,121),(49,120),(50,119),(51,118),(52,117),(53,116),(54,115),(55,114),(56,113),(57,112),(58,111),(59,110),(60,109),(61,108),(62,107),(63,106),(64,105),(65,104),(66,103),(67,102),(68,101),(69,100),(70,99),(71,98),(72,97),(73,96),(74,95),(75,94),(76,93),(77,92),(78,91),(79,90),(80,89)]])
86 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10F | 16A | ··· | 16H | 20A | ··· | 20H | 40A | ··· | 40P | 80A | ··· | 80AF |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 16 | ··· | 16 | 20 | ··· | 20 | 40 | ··· | 40 | 80 | ··· | 80 |
size | 1 | 1 | 1 | 1 | 40 | 40 | 40 | 40 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
86 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 | D4 | D5 | D8 | D8 | D10 | D10 | D16 | D20 | D20 | D40 | D40 | D80 |
kernel | C2×D80 | D80 | C2×C80 | C2×D40 | C40 | C2×C20 | C2×C16 | C20 | C2×C10 | C16 | C2×C8 | C10 | C8 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 4 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 4 | 2 | 8 | 4 | 4 | 8 | 8 | 32 |
Matrix representation of C2×D80 ►in GL3(𝔽241) generated by
240 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
240 | 0 | 0 |
0 | 126 | 13 |
0 | 228 | 79 |
240 | 0 | 0 |
0 | 2 | 58 |
0 | 162 | 239 |
G:=sub<GL(3,GF(241))| [240,0,0,0,1,0,0,0,1],[240,0,0,0,126,228,0,13,79],[240,0,0,0,2,162,0,58,239] >;
C2×D80 in GAP, Magma, Sage, TeX
C_2\times D_{80}
% in TeX
G:=Group("C2xD80");
// GroupNames label
G:=SmallGroup(320,529);
// by ID
G=gap.SmallGroup(320,529);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,254,142,675,192,1684,102,12550]);
// Polycyclic
G:=Group<a,b,c|a^2=b^80=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations