metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20⋊Q8⋊22C2, (C2×Dic5)⋊9Q8, C4⋊C4.186D10, (Q8×Dic5)⋊10C2, C22.5(Q8×D5), Dic5.3(C2×Q8), C22⋊Q8.10D5, (C2×C20).48C23, (C2×Q8).121D10, C22⋊C4.52D10, Dic5⋊3Q8⋊23C2, Dic5⋊Q8⋊11C2, C20.207(C4○D4), C4.70(D4⋊2D5), C10.32(C22×Q8), (C2×C10).166C24, (C22×C4).369D10, Dic5.12(C4○D4), Dic5.Q8⋊15C2, C20.48D4.15C2, C4⋊Dic5.211C22, (Q8×C10).101C22, (C2×Dic5).83C23, C23.184(C22×D5), C22.187(C23×D5), C23.D5.30C22, (C22×C10).194C23, (C22×C20).247C22, Dic5.14D4.2C2, C5⋊4(C23.37C23), (C4×Dic5).286C22, C10.D4.22C22, C23.11D10.1C2, (C2×Dic10).163C22, (C22×Dic5).245C22, C2.15(C2×Q8×D5), C2.45(D5×C4○D4), (C2×C10).5(C2×Q8), C10.88(C2×C4○D4), (C2×C4×Dic5).15C2, (C5×C22⋊Q8).7C2, C2.43(C2×D4⋊2D5), (C5×C4⋊C4).152C22, (C2×C4).295(C22×D5), (C5×C22⋊C4).21C22, SmallGroup(320,1294)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (Q8×Dic5)⋊C2
G = < a,b,c,d,e | a4=c10=e2=1, b2=a2, d2=c5, bab-1=a-1, ac=ca, ad=da, eae=ac5, bc=cb, bd=db, be=eb, dcd-1=c-1, ce=ec, de=ed >
Subgroups: 622 in 222 conjugacy classes, 109 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, Q8, C23, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2×Q8, Dic5, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C2×C42, C42⋊C2, C4×Q8, C22⋊Q8, C22⋊Q8, C42.C2, C4⋊Q8, Dic10, C2×Dic5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C2×C20, C5×Q8, C22×C10, C23.37C23, C4×Dic5, C4×Dic5, C10.D4, C4⋊Dic5, C4⋊Dic5, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C2×Dic10, C22×Dic5, C22×C20, Q8×C10, C23.11D10, Dic5.14D4, Dic5⋊3Q8, Dic5⋊3Q8, C20⋊Q8, Dic5.Q8, C2×C4×Dic5, C20.48D4, Dic5⋊Q8, Q8×Dic5, C5×C22⋊Q8, (Q8×Dic5)⋊C2
Quotients: C1, C2, C22, Q8, C23, D5, C2×Q8, C4○D4, C24, D10, C22×Q8, C2×C4○D4, C22×D5, C23.37C23, D4⋊2D5, Q8×D5, C23×D5, C2×D4⋊2D5, C2×Q8×D5, D5×C4○D4, (Q8×Dic5)⋊C2
(1 31 11 21)(2 32 12 22)(3 33 13 23)(4 34 14 24)(5 35 15 25)(6 36 16 26)(7 37 17 27)(8 38 18 28)(9 39 19 29)(10 40 20 30)(41 61 51 71)(42 62 52 72)(43 63 53 73)(44 64 54 74)(45 65 55 75)(46 66 56 76)(47 67 57 77)(48 68 58 78)(49 69 59 79)(50 70 60 80)(81 111 91 101)(82 112 92 102)(83 113 93 103)(84 114 94 104)(85 115 95 105)(86 116 96 106)(87 117 97 107)(88 118 98 108)(89 119 99 109)(90 120 100 110)(121 141 131 151)(122 142 132 152)(123 143 133 153)(124 144 134 154)(125 145 135 155)(126 146 136 156)(127 147 137 157)(128 148 138 158)(129 149 139 159)(130 150 140 160)
(1 51 11 41)(2 52 12 42)(3 53 13 43)(4 54 14 44)(5 55 15 45)(6 56 16 46)(7 57 17 47)(8 58 18 48)(9 59 19 49)(10 60 20 50)(21 71 31 61)(22 72 32 62)(23 73 33 63)(24 74 34 64)(25 75 35 65)(26 76 36 66)(27 77 37 67)(28 78 38 68)(29 79 39 69)(30 80 40 70)(81 131 91 121)(82 132 92 122)(83 133 93 123)(84 134 94 124)(85 135 95 125)(86 136 96 126)(87 137 97 127)(88 138 98 128)(89 139 99 129)(90 140 100 130)(101 151 111 141)(102 152 112 142)(103 153 113 143)(104 154 114 144)(105 155 115 145)(106 156 116 146)(107 157 117 147)(108 158 118 148)(109 159 119 149)(110 160 120 150)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 84 6 89)(2 83 7 88)(3 82 8 87)(4 81 9 86)(5 90 10 85)(11 94 16 99)(12 93 17 98)(13 92 18 97)(14 91 19 96)(15 100 20 95)(21 104 26 109)(22 103 27 108)(23 102 28 107)(24 101 29 106)(25 110 30 105)(31 114 36 119)(32 113 37 118)(33 112 38 117)(34 111 39 116)(35 120 40 115)(41 124 46 129)(42 123 47 128)(43 122 48 127)(44 121 49 126)(45 130 50 125)(51 134 56 139)(52 133 57 138)(53 132 58 137)(54 131 59 136)(55 140 60 135)(61 144 66 149)(62 143 67 148)(63 142 68 147)(64 141 69 146)(65 150 70 145)(71 154 76 159)(72 153 77 158)(73 152 78 157)(74 151 79 156)(75 160 80 155)
(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(61 66)(62 67)(63 68)(64 69)(65 70)(71 76)(72 77)(73 78)(74 79)(75 80)(101 106)(102 107)(103 108)(104 109)(105 110)(111 116)(112 117)(113 118)(114 119)(115 120)(141 146)(142 147)(143 148)(144 149)(145 150)(151 156)(152 157)(153 158)(154 159)(155 160)
G:=sub<Sym(160)| (1,31,11,21)(2,32,12,22)(3,33,13,23)(4,34,14,24)(5,35,15,25)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,61,51,71)(42,62,52,72)(43,63,53,73)(44,64,54,74)(45,65,55,75)(46,66,56,76)(47,67,57,77)(48,68,58,78)(49,69,59,79)(50,70,60,80)(81,111,91,101)(82,112,92,102)(83,113,93,103)(84,114,94,104)(85,115,95,105)(86,116,96,106)(87,117,97,107)(88,118,98,108)(89,119,99,109)(90,120,100,110)(121,141,131,151)(122,142,132,152)(123,143,133,153)(124,144,134,154)(125,145,135,155)(126,146,136,156)(127,147,137,157)(128,148,138,158)(129,149,139,159)(130,150,140,160), (1,51,11,41)(2,52,12,42)(3,53,13,43)(4,54,14,44)(5,55,15,45)(6,56,16,46)(7,57,17,47)(8,58,18,48)(9,59,19,49)(10,60,20,50)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70)(81,131,91,121)(82,132,92,122)(83,133,93,123)(84,134,94,124)(85,135,95,125)(86,136,96,126)(87,137,97,127)(88,138,98,128)(89,139,99,129)(90,140,100,130)(101,151,111,141)(102,152,112,142)(103,153,113,143)(104,154,114,144)(105,155,115,145)(106,156,116,146)(107,157,117,147)(108,158,118,148)(109,159,119,149)(110,160,120,150), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,84,6,89)(2,83,7,88)(3,82,8,87)(4,81,9,86)(5,90,10,85)(11,94,16,99)(12,93,17,98)(13,92,18,97)(14,91,19,96)(15,100,20,95)(21,104,26,109)(22,103,27,108)(23,102,28,107)(24,101,29,106)(25,110,30,105)(31,114,36,119)(32,113,37,118)(33,112,38,117)(34,111,39,116)(35,120,40,115)(41,124,46,129)(42,123,47,128)(43,122,48,127)(44,121,49,126)(45,130,50,125)(51,134,56,139)(52,133,57,138)(53,132,58,137)(54,131,59,136)(55,140,60,135)(61,144,66,149)(62,143,67,148)(63,142,68,147)(64,141,69,146)(65,150,70,145)(71,154,76,159)(72,153,77,158)(73,152,78,157)(74,151,79,156)(75,160,80,155), (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(101,106)(102,107)(103,108)(104,109)(105,110)(111,116)(112,117)(113,118)(114,119)(115,120)(141,146)(142,147)(143,148)(144,149)(145,150)(151,156)(152,157)(153,158)(154,159)(155,160)>;
G:=Group( (1,31,11,21)(2,32,12,22)(3,33,13,23)(4,34,14,24)(5,35,15,25)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,61,51,71)(42,62,52,72)(43,63,53,73)(44,64,54,74)(45,65,55,75)(46,66,56,76)(47,67,57,77)(48,68,58,78)(49,69,59,79)(50,70,60,80)(81,111,91,101)(82,112,92,102)(83,113,93,103)(84,114,94,104)(85,115,95,105)(86,116,96,106)(87,117,97,107)(88,118,98,108)(89,119,99,109)(90,120,100,110)(121,141,131,151)(122,142,132,152)(123,143,133,153)(124,144,134,154)(125,145,135,155)(126,146,136,156)(127,147,137,157)(128,148,138,158)(129,149,139,159)(130,150,140,160), (1,51,11,41)(2,52,12,42)(3,53,13,43)(4,54,14,44)(5,55,15,45)(6,56,16,46)(7,57,17,47)(8,58,18,48)(9,59,19,49)(10,60,20,50)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70)(81,131,91,121)(82,132,92,122)(83,133,93,123)(84,134,94,124)(85,135,95,125)(86,136,96,126)(87,137,97,127)(88,138,98,128)(89,139,99,129)(90,140,100,130)(101,151,111,141)(102,152,112,142)(103,153,113,143)(104,154,114,144)(105,155,115,145)(106,156,116,146)(107,157,117,147)(108,158,118,148)(109,159,119,149)(110,160,120,150), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,84,6,89)(2,83,7,88)(3,82,8,87)(4,81,9,86)(5,90,10,85)(11,94,16,99)(12,93,17,98)(13,92,18,97)(14,91,19,96)(15,100,20,95)(21,104,26,109)(22,103,27,108)(23,102,28,107)(24,101,29,106)(25,110,30,105)(31,114,36,119)(32,113,37,118)(33,112,38,117)(34,111,39,116)(35,120,40,115)(41,124,46,129)(42,123,47,128)(43,122,48,127)(44,121,49,126)(45,130,50,125)(51,134,56,139)(52,133,57,138)(53,132,58,137)(54,131,59,136)(55,140,60,135)(61,144,66,149)(62,143,67,148)(63,142,68,147)(64,141,69,146)(65,150,70,145)(71,154,76,159)(72,153,77,158)(73,152,78,157)(74,151,79,156)(75,160,80,155), (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(101,106)(102,107)(103,108)(104,109)(105,110)(111,116)(112,117)(113,118)(114,119)(115,120)(141,146)(142,147)(143,148)(144,149)(145,150)(151,156)(152,157)(153,158)(154,159)(155,160) );
G=PermutationGroup([[(1,31,11,21),(2,32,12,22),(3,33,13,23),(4,34,14,24),(5,35,15,25),(6,36,16,26),(7,37,17,27),(8,38,18,28),(9,39,19,29),(10,40,20,30),(41,61,51,71),(42,62,52,72),(43,63,53,73),(44,64,54,74),(45,65,55,75),(46,66,56,76),(47,67,57,77),(48,68,58,78),(49,69,59,79),(50,70,60,80),(81,111,91,101),(82,112,92,102),(83,113,93,103),(84,114,94,104),(85,115,95,105),(86,116,96,106),(87,117,97,107),(88,118,98,108),(89,119,99,109),(90,120,100,110),(121,141,131,151),(122,142,132,152),(123,143,133,153),(124,144,134,154),(125,145,135,155),(126,146,136,156),(127,147,137,157),(128,148,138,158),(129,149,139,159),(130,150,140,160)], [(1,51,11,41),(2,52,12,42),(3,53,13,43),(4,54,14,44),(5,55,15,45),(6,56,16,46),(7,57,17,47),(8,58,18,48),(9,59,19,49),(10,60,20,50),(21,71,31,61),(22,72,32,62),(23,73,33,63),(24,74,34,64),(25,75,35,65),(26,76,36,66),(27,77,37,67),(28,78,38,68),(29,79,39,69),(30,80,40,70),(81,131,91,121),(82,132,92,122),(83,133,93,123),(84,134,94,124),(85,135,95,125),(86,136,96,126),(87,137,97,127),(88,138,98,128),(89,139,99,129),(90,140,100,130),(101,151,111,141),(102,152,112,142),(103,153,113,143),(104,154,114,144),(105,155,115,145),(106,156,116,146),(107,157,117,147),(108,158,118,148),(109,159,119,149),(110,160,120,150)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,84,6,89),(2,83,7,88),(3,82,8,87),(4,81,9,86),(5,90,10,85),(11,94,16,99),(12,93,17,98),(13,92,18,97),(14,91,19,96),(15,100,20,95),(21,104,26,109),(22,103,27,108),(23,102,28,107),(24,101,29,106),(25,110,30,105),(31,114,36,119),(32,113,37,118),(33,112,38,117),(34,111,39,116),(35,120,40,115),(41,124,46,129),(42,123,47,128),(43,122,48,127),(44,121,49,126),(45,130,50,125),(51,134,56,139),(52,133,57,138),(53,132,58,137),(54,131,59,136),(55,140,60,135),(61,144,66,149),(62,143,67,148),(63,142,68,147),(64,141,69,146),(65,150,70,145),(71,154,76,159),(72,153,77,158),(73,152,78,157),(74,151,79,156),(75,160,80,155)], [(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(61,66),(62,67),(63,68),(64,69),(65,70),(71,76),(72,77),(73,78),(74,79),(75,80),(101,106),(102,107),(103,108),(104,109),(105,110),(111,116),(112,117),(113,118),(114,119),(115,120),(141,146),(142,147),(143,148),(144,149),(145,150),(151,156),(152,157),(153,158),(154,159),(155,160)]])
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | ··· | 4R | 4S | 4T | 4U | 4V | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20H | 20I | ··· | 20P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | - | + | + | + | + | + | - | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | Q8 | D5 | C4○D4 | C4○D4 | D10 | D10 | D10 | D10 | D4⋊2D5 | Q8×D5 | D5×C4○D4 |
kernel | (Q8×Dic5)⋊C2 | C23.11D10 | Dic5.14D4 | Dic5⋊3Q8 | C20⋊Q8 | Dic5.Q8 | C2×C4×Dic5 | C20.48D4 | Dic5⋊Q8 | Q8×Dic5 | C5×C22⋊Q8 | C2×Dic5 | C22⋊Q8 | Dic5 | C20 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×Q8 | C4 | C22 | C2 |
# reps | 1 | 2 | 2 | 3 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 4 | 2 | 4 | 4 | 4 | 6 | 2 | 2 | 4 | 4 | 4 |
Matrix representation of (Q8×Dic5)⋊C2 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 39 | 35 |
0 | 0 | 0 | 0 | 35 | 2 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,39,35,0,0,0,0,35,2],[16,0,0,0,0,0,0,18,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
(Q8×Dic5)⋊C2 in GAP, Magma, Sage, TeX
(Q_8\times {\rm Dic}_5)\rtimes C_2
% in TeX
G:=Group("(Q8xDic5):C2");
// GroupNames label
G:=SmallGroup(320,1294);
// by ID
G=gap.SmallGroup(320,1294);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,100,570,185,80,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=c^10=e^2=1,b^2=a^2,d^2=c^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,e*a*e=a*c^5,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,d*e=e*d>;
// generators/relations