Copied to
clipboard

G = (Q8×Dic5)⋊C2order 320 = 26·5

10th semidirect product of Q8×Dic5 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C20⋊Q822C2, (C2×Dic5)⋊9Q8, C4⋊C4.186D10, (Q8×Dic5)⋊10C2, C22.5(Q8×D5), Dic5.3(C2×Q8), C22⋊Q8.10D5, (C2×C20).48C23, (C2×Q8).121D10, C22⋊C4.52D10, Dic53Q823C2, Dic5⋊Q811C2, C20.207(C4○D4), C4.70(D42D5), C10.32(C22×Q8), (C2×C10).166C24, (C22×C4).369D10, Dic5.12(C4○D4), Dic5.Q815C2, C20.48D4.15C2, C4⋊Dic5.211C22, (Q8×C10).101C22, (C2×Dic5).83C23, C23.184(C22×D5), C22.187(C23×D5), C23.D5.30C22, (C22×C10).194C23, (C22×C20).247C22, Dic5.14D4.2C2, C54(C23.37C23), (C4×Dic5).286C22, C10.D4.22C22, C23.11D10.1C2, (C2×Dic10).163C22, (C22×Dic5).245C22, C2.15(C2×Q8×D5), C2.45(D5×C4○D4), (C2×C10).5(C2×Q8), C10.88(C2×C4○D4), (C2×C4×Dic5).15C2, (C5×C22⋊Q8).7C2, C2.43(C2×D42D5), (C5×C4⋊C4).152C22, (C2×C4).295(C22×D5), (C5×C22⋊C4).21C22, SmallGroup(320,1294)

Series: Derived Chief Lower central Upper central

C1C2×C10 — (Q8×Dic5)⋊C2
C1C5C10C2×C10C2×Dic5C22×Dic5C2×C4×Dic5 — (Q8×Dic5)⋊C2
C5C2×C10 — (Q8×Dic5)⋊C2
C1C22C22⋊Q8

Generators and relations for (Q8×Dic5)⋊C2
 G = < a,b,c,d,e | a4=c10=e2=1, b2=a2, d2=c5, bab-1=a-1, ac=ca, ad=da, eae=ac5, bc=cb, bd=db, be=eb, dcd-1=c-1, ce=ec, de=ed >

Subgroups: 622 in 222 conjugacy classes, 109 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, Q8, C23, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2×Q8, Dic5, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C2×C42, C42⋊C2, C4×Q8, C22⋊Q8, C22⋊Q8, C42.C2, C4⋊Q8, Dic10, C2×Dic5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C2×C20, C5×Q8, C22×C10, C23.37C23, C4×Dic5, C4×Dic5, C10.D4, C4⋊Dic5, C4⋊Dic5, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C2×Dic10, C22×Dic5, C22×C20, Q8×C10, C23.11D10, Dic5.14D4, Dic53Q8, Dic53Q8, C20⋊Q8, Dic5.Q8, C2×C4×Dic5, C20.48D4, Dic5⋊Q8, Q8×Dic5, C5×C22⋊Q8, (Q8×Dic5)⋊C2
Quotients: C1, C2, C22, Q8, C23, D5, C2×Q8, C4○D4, C24, D10, C22×Q8, C2×C4○D4, C22×D5, C23.37C23, D42D5, Q8×D5, C23×D5, C2×D42D5, C2×Q8×D5, D5×C4○D4, (Q8×Dic5)⋊C2

Smallest permutation representation of (Q8×Dic5)⋊C2
On 160 points
Generators in S160
(1 31 11 21)(2 32 12 22)(3 33 13 23)(4 34 14 24)(5 35 15 25)(6 36 16 26)(7 37 17 27)(8 38 18 28)(9 39 19 29)(10 40 20 30)(41 61 51 71)(42 62 52 72)(43 63 53 73)(44 64 54 74)(45 65 55 75)(46 66 56 76)(47 67 57 77)(48 68 58 78)(49 69 59 79)(50 70 60 80)(81 111 91 101)(82 112 92 102)(83 113 93 103)(84 114 94 104)(85 115 95 105)(86 116 96 106)(87 117 97 107)(88 118 98 108)(89 119 99 109)(90 120 100 110)(121 141 131 151)(122 142 132 152)(123 143 133 153)(124 144 134 154)(125 145 135 155)(126 146 136 156)(127 147 137 157)(128 148 138 158)(129 149 139 159)(130 150 140 160)
(1 51 11 41)(2 52 12 42)(3 53 13 43)(4 54 14 44)(5 55 15 45)(6 56 16 46)(7 57 17 47)(8 58 18 48)(9 59 19 49)(10 60 20 50)(21 71 31 61)(22 72 32 62)(23 73 33 63)(24 74 34 64)(25 75 35 65)(26 76 36 66)(27 77 37 67)(28 78 38 68)(29 79 39 69)(30 80 40 70)(81 131 91 121)(82 132 92 122)(83 133 93 123)(84 134 94 124)(85 135 95 125)(86 136 96 126)(87 137 97 127)(88 138 98 128)(89 139 99 129)(90 140 100 130)(101 151 111 141)(102 152 112 142)(103 153 113 143)(104 154 114 144)(105 155 115 145)(106 156 116 146)(107 157 117 147)(108 158 118 148)(109 159 119 149)(110 160 120 150)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 84 6 89)(2 83 7 88)(3 82 8 87)(4 81 9 86)(5 90 10 85)(11 94 16 99)(12 93 17 98)(13 92 18 97)(14 91 19 96)(15 100 20 95)(21 104 26 109)(22 103 27 108)(23 102 28 107)(24 101 29 106)(25 110 30 105)(31 114 36 119)(32 113 37 118)(33 112 38 117)(34 111 39 116)(35 120 40 115)(41 124 46 129)(42 123 47 128)(43 122 48 127)(44 121 49 126)(45 130 50 125)(51 134 56 139)(52 133 57 138)(53 132 58 137)(54 131 59 136)(55 140 60 135)(61 144 66 149)(62 143 67 148)(63 142 68 147)(64 141 69 146)(65 150 70 145)(71 154 76 159)(72 153 77 158)(73 152 78 157)(74 151 79 156)(75 160 80 155)
(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(61 66)(62 67)(63 68)(64 69)(65 70)(71 76)(72 77)(73 78)(74 79)(75 80)(101 106)(102 107)(103 108)(104 109)(105 110)(111 116)(112 117)(113 118)(114 119)(115 120)(141 146)(142 147)(143 148)(144 149)(145 150)(151 156)(152 157)(153 158)(154 159)(155 160)

G:=sub<Sym(160)| (1,31,11,21)(2,32,12,22)(3,33,13,23)(4,34,14,24)(5,35,15,25)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,61,51,71)(42,62,52,72)(43,63,53,73)(44,64,54,74)(45,65,55,75)(46,66,56,76)(47,67,57,77)(48,68,58,78)(49,69,59,79)(50,70,60,80)(81,111,91,101)(82,112,92,102)(83,113,93,103)(84,114,94,104)(85,115,95,105)(86,116,96,106)(87,117,97,107)(88,118,98,108)(89,119,99,109)(90,120,100,110)(121,141,131,151)(122,142,132,152)(123,143,133,153)(124,144,134,154)(125,145,135,155)(126,146,136,156)(127,147,137,157)(128,148,138,158)(129,149,139,159)(130,150,140,160), (1,51,11,41)(2,52,12,42)(3,53,13,43)(4,54,14,44)(5,55,15,45)(6,56,16,46)(7,57,17,47)(8,58,18,48)(9,59,19,49)(10,60,20,50)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70)(81,131,91,121)(82,132,92,122)(83,133,93,123)(84,134,94,124)(85,135,95,125)(86,136,96,126)(87,137,97,127)(88,138,98,128)(89,139,99,129)(90,140,100,130)(101,151,111,141)(102,152,112,142)(103,153,113,143)(104,154,114,144)(105,155,115,145)(106,156,116,146)(107,157,117,147)(108,158,118,148)(109,159,119,149)(110,160,120,150), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,84,6,89)(2,83,7,88)(3,82,8,87)(4,81,9,86)(5,90,10,85)(11,94,16,99)(12,93,17,98)(13,92,18,97)(14,91,19,96)(15,100,20,95)(21,104,26,109)(22,103,27,108)(23,102,28,107)(24,101,29,106)(25,110,30,105)(31,114,36,119)(32,113,37,118)(33,112,38,117)(34,111,39,116)(35,120,40,115)(41,124,46,129)(42,123,47,128)(43,122,48,127)(44,121,49,126)(45,130,50,125)(51,134,56,139)(52,133,57,138)(53,132,58,137)(54,131,59,136)(55,140,60,135)(61,144,66,149)(62,143,67,148)(63,142,68,147)(64,141,69,146)(65,150,70,145)(71,154,76,159)(72,153,77,158)(73,152,78,157)(74,151,79,156)(75,160,80,155), (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(101,106)(102,107)(103,108)(104,109)(105,110)(111,116)(112,117)(113,118)(114,119)(115,120)(141,146)(142,147)(143,148)(144,149)(145,150)(151,156)(152,157)(153,158)(154,159)(155,160)>;

G:=Group( (1,31,11,21)(2,32,12,22)(3,33,13,23)(4,34,14,24)(5,35,15,25)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,61,51,71)(42,62,52,72)(43,63,53,73)(44,64,54,74)(45,65,55,75)(46,66,56,76)(47,67,57,77)(48,68,58,78)(49,69,59,79)(50,70,60,80)(81,111,91,101)(82,112,92,102)(83,113,93,103)(84,114,94,104)(85,115,95,105)(86,116,96,106)(87,117,97,107)(88,118,98,108)(89,119,99,109)(90,120,100,110)(121,141,131,151)(122,142,132,152)(123,143,133,153)(124,144,134,154)(125,145,135,155)(126,146,136,156)(127,147,137,157)(128,148,138,158)(129,149,139,159)(130,150,140,160), (1,51,11,41)(2,52,12,42)(3,53,13,43)(4,54,14,44)(5,55,15,45)(6,56,16,46)(7,57,17,47)(8,58,18,48)(9,59,19,49)(10,60,20,50)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70)(81,131,91,121)(82,132,92,122)(83,133,93,123)(84,134,94,124)(85,135,95,125)(86,136,96,126)(87,137,97,127)(88,138,98,128)(89,139,99,129)(90,140,100,130)(101,151,111,141)(102,152,112,142)(103,153,113,143)(104,154,114,144)(105,155,115,145)(106,156,116,146)(107,157,117,147)(108,158,118,148)(109,159,119,149)(110,160,120,150), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,84,6,89)(2,83,7,88)(3,82,8,87)(4,81,9,86)(5,90,10,85)(11,94,16,99)(12,93,17,98)(13,92,18,97)(14,91,19,96)(15,100,20,95)(21,104,26,109)(22,103,27,108)(23,102,28,107)(24,101,29,106)(25,110,30,105)(31,114,36,119)(32,113,37,118)(33,112,38,117)(34,111,39,116)(35,120,40,115)(41,124,46,129)(42,123,47,128)(43,122,48,127)(44,121,49,126)(45,130,50,125)(51,134,56,139)(52,133,57,138)(53,132,58,137)(54,131,59,136)(55,140,60,135)(61,144,66,149)(62,143,67,148)(63,142,68,147)(64,141,69,146)(65,150,70,145)(71,154,76,159)(72,153,77,158)(73,152,78,157)(74,151,79,156)(75,160,80,155), (21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(101,106)(102,107)(103,108)(104,109)(105,110)(111,116)(112,117)(113,118)(114,119)(115,120)(141,146)(142,147)(143,148)(144,149)(145,150)(151,156)(152,157)(153,158)(154,159)(155,160) );

G=PermutationGroup([[(1,31,11,21),(2,32,12,22),(3,33,13,23),(4,34,14,24),(5,35,15,25),(6,36,16,26),(7,37,17,27),(8,38,18,28),(9,39,19,29),(10,40,20,30),(41,61,51,71),(42,62,52,72),(43,63,53,73),(44,64,54,74),(45,65,55,75),(46,66,56,76),(47,67,57,77),(48,68,58,78),(49,69,59,79),(50,70,60,80),(81,111,91,101),(82,112,92,102),(83,113,93,103),(84,114,94,104),(85,115,95,105),(86,116,96,106),(87,117,97,107),(88,118,98,108),(89,119,99,109),(90,120,100,110),(121,141,131,151),(122,142,132,152),(123,143,133,153),(124,144,134,154),(125,145,135,155),(126,146,136,156),(127,147,137,157),(128,148,138,158),(129,149,139,159),(130,150,140,160)], [(1,51,11,41),(2,52,12,42),(3,53,13,43),(4,54,14,44),(5,55,15,45),(6,56,16,46),(7,57,17,47),(8,58,18,48),(9,59,19,49),(10,60,20,50),(21,71,31,61),(22,72,32,62),(23,73,33,63),(24,74,34,64),(25,75,35,65),(26,76,36,66),(27,77,37,67),(28,78,38,68),(29,79,39,69),(30,80,40,70),(81,131,91,121),(82,132,92,122),(83,133,93,123),(84,134,94,124),(85,135,95,125),(86,136,96,126),(87,137,97,127),(88,138,98,128),(89,139,99,129),(90,140,100,130),(101,151,111,141),(102,152,112,142),(103,153,113,143),(104,154,114,144),(105,155,115,145),(106,156,116,146),(107,157,117,147),(108,158,118,148),(109,159,119,149),(110,160,120,150)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,84,6,89),(2,83,7,88),(3,82,8,87),(4,81,9,86),(5,90,10,85),(11,94,16,99),(12,93,17,98),(13,92,18,97),(14,91,19,96),(15,100,20,95),(21,104,26,109),(22,103,27,108),(23,102,28,107),(24,101,29,106),(25,110,30,105),(31,114,36,119),(32,113,37,118),(33,112,38,117),(34,111,39,116),(35,120,40,115),(41,124,46,129),(42,123,47,128),(43,122,48,127),(44,121,49,126),(45,130,50,125),(51,134,56,139),(52,133,57,138),(53,132,58,137),(54,131,59,136),(55,140,60,135),(61,144,66,149),(62,143,67,148),(63,142,68,147),(64,141,69,146),(65,150,70,145),(71,154,76,159),(72,153,77,158),(73,152,78,157),(74,151,79,156),(75,160,80,155)], [(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(61,66),(62,67),(63,68),(64,69),(65,70),(71,76),(72,77),(73,78),(74,79),(75,80),(101,106),(102,107),(103,108),(104,109),(105,110),(111,116),(112,117),(113,118),(114,119),(115,120),(141,146),(142,147),(143,148),(144,149),(145,150),(151,156),(152,157),(153,158),(154,159),(155,160)]])

56 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I4J4K4L4M···4R4S4T4U4V5A5B10A···10F10G10H10I10J20A···20H20I···20P
order1222224444444444444···444445510···101010101020···2020···20
size11112222224444555510···1020202020222···244444···48···8

56 irreducible representations

dim1111111111122222222444
type+++++++++++-+++++--
imageC1C2C2C2C2C2C2C2C2C2C2Q8D5C4○D4C4○D4D10D10D10D10D42D5Q8×D5D5×C4○D4
kernel(Q8×Dic5)⋊C2C23.11D10Dic5.14D4Dic53Q8C20⋊Q8Dic5.Q8C2×C4×Dic5C20.48D4Dic5⋊Q8Q8×Dic5C5×C22⋊Q8C2×Dic5C22⋊Q8Dic5C20C22⋊C4C4⋊C4C22×C4C2×Q8C4C22C2
# reps1223121111142444622444

Matrix representation of (Q8×Dic5)⋊C2 in GL6(𝔽41)

100000
010000
000100
001000
0000040
000010
,
4000000
0400000
0040000
0004000
00003935
0000352
,
1600000
0180000
0040000
0004000
000010
000001
,
010000
100000
009000
000900
0000400
0000040
,
100000
010000
001000
0004000
000010
000001

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,39,35,0,0,0,0,35,2],[16,0,0,0,0,0,0,18,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

(Q8×Dic5)⋊C2 in GAP, Magma, Sage, TeX

(Q_8\times {\rm Dic}_5)\rtimes C_2
% in TeX

G:=Group("(Q8xDic5):C2");
// GroupNames label

G:=SmallGroup(320,1294);
// by ID

G=gap.SmallGroup(320,1294);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,100,570,185,80,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=c^10=e^2=1,b^2=a^2,d^2=c^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,e*a*e=a*c^5,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,d*e=e*d>;
// generators/relations

׿
×
𝔽