Copied to
clipboard

G = C10.742- 1+4order 320 = 26·5

29th non-split extension by C10 of 2- 1+4 acting via 2- 1+4/C4○D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.742- 1+4, C10.492+ 1+4, C4⋊D424D5, C4⋊C4.93D10, C202D429C2, (C2×D4).96D10, D10⋊Q816C2, (C2×C20).47C23, C22⋊C4.12D10, Dic5⋊D419C2, C20.48D445C2, C20.17D420C2, (C2×C10).165C24, (C22×C4).231D10, C4⋊Dic5.46C22, D10.12D423C2, C2.51(D46D10), Dic5.Q814C2, Dic5.5D423C2, (D4×C10).129C22, (C2×Dic5).82C23, (C22×D5).72C23, C23.115(C22×D5), C22.186(C23×D5), Dic5.14D421C2, C23.D5.29C22, D10⋊C4.18C22, C23.18D1023C2, C23.23D1013C2, (C22×C10).193C23, (C22×C20).313C22, C51(C22.56C24), (C4×Dic5).108C22, (C2×Dic10).36C22, C10.D4.79C22, C2.32(D4.10D10), (C22×Dic5).116C22, (C5×C4⋊D4)⋊27C2, (C2×C4×D5).99C22, (C2×C4).43(C22×D5), (C5×C4⋊C4).151C22, (C2×C5⋊D4).36C22, (C5×C22⋊C4).20C22, SmallGroup(320,1293)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.742- 1+4
C1C5C10C2×C10C22×D5C2×C4×D5D10.12D4 — C10.742- 1+4
C5C2×C10 — C10.742- 1+4
C1C22C4⋊D4

Generators and relations for C10.742- 1+4
 G = < a,b,c,d,e | a10=b4=c2=1, d2=e2=b2, bab-1=dad-1=a-1, ac=ca, ae=ea, cbc=b-1, bd=db, ebe-1=a5b, dcd-1=a5c, ce=ec, ede-1=a5b2d >

Subgroups: 790 in 220 conjugacy classes, 91 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, Dic5, C20, D10, C2×C10, C2×C10, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, Dic10, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C22.56C24, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C22×Dic5, C2×C5⋊D4, C22×C20, D4×C10, Dic5.14D4, D10.12D4, Dic5.5D4, Dic5.Q8, D10⋊Q8, C20.48D4, C23.23D10, C23.18D10, C20.17D4, C202D4, Dic5⋊D4, C5×C4⋊D4, C10.742- 1+4
Quotients: C1, C2, C22, C23, D5, C24, D10, 2+ 1+4, 2- 1+4, C22×D5, C22.56C24, C23×D5, D46D10, D4.10D10, C10.742- 1+4

Smallest permutation representation of C10.742- 1+4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 50 25 33)(2 49 26 32)(3 48 27 31)(4 47 28 40)(5 46 29 39)(6 45 30 38)(7 44 21 37)(8 43 22 36)(9 42 23 35)(10 41 24 34)(11 138 158 145)(12 137 159 144)(13 136 160 143)(14 135 151 142)(15 134 152 141)(16 133 153 150)(17 132 154 149)(18 131 155 148)(19 140 156 147)(20 139 157 146)(51 87 68 80)(52 86 69 79)(53 85 70 78)(54 84 61 77)(55 83 62 76)(56 82 63 75)(57 81 64 74)(58 90 65 73)(59 89 66 72)(60 88 67 71)(91 115 108 122)(92 114 109 121)(93 113 110 130)(94 112 101 129)(95 111 102 128)(96 120 103 127)(97 119 104 126)(98 118 105 125)(99 117 106 124)(100 116 107 123)
(1 38)(2 39)(3 40)(4 31)(5 32)(6 33)(7 34)(8 35)(9 36)(10 37)(11 145)(12 146)(13 147)(14 148)(15 149)(16 150)(17 141)(18 142)(19 143)(20 144)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(51 83)(52 84)(53 85)(54 86)(55 87)(56 88)(57 89)(58 90)(59 81)(60 82)(61 79)(62 80)(63 71)(64 72)(65 73)(66 74)(67 75)(68 76)(69 77)(70 78)(91 123)(92 124)(93 125)(94 126)(95 127)(96 128)(97 129)(98 130)(99 121)(100 122)(101 119)(102 120)(103 111)(104 112)(105 113)(106 114)(107 115)(108 116)(109 117)(110 118)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 90 25 73)(2 89 26 72)(3 88 27 71)(4 87 28 80)(5 86 29 79)(6 85 30 78)(7 84 21 77)(8 83 22 76)(9 82 23 75)(10 81 24 74)(11 93 158 110)(12 92 159 109)(13 91 160 108)(14 100 151 107)(15 99 152 106)(16 98 153 105)(17 97 154 104)(18 96 155 103)(19 95 156 102)(20 94 157 101)(31 60 48 67)(32 59 49 66)(33 58 50 65)(34 57 41 64)(35 56 42 63)(36 55 43 62)(37 54 44 61)(38 53 45 70)(39 52 46 69)(40 51 47 68)(111 147 128 140)(112 146 129 139)(113 145 130 138)(114 144 121 137)(115 143 122 136)(116 142 123 135)(117 141 124 134)(118 150 125 133)(119 149 126 132)(120 148 127 131)
(1 11 25 158)(2 12 26 159)(3 13 27 160)(4 14 28 151)(5 15 29 152)(6 16 30 153)(7 17 21 154)(8 18 22 155)(9 19 23 156)(10 20 24 157)(31 148 48 131)(32 149 49 132)(33 150 50 133)(34 141 41 134)(35 142 42 135)(36 143 43 136)(37 144 44 137)(38 145 45 138)(39 146 46 139)(40 147 47 140)(51 116 68 123)(52 117 69 124)(53 118 70 125)(54 119 61 126)(55 120 62 127)(56 111 63 128)(57 112 64 129)(58 113 65 130)(59 114 66 121)(60 115 67 122)(71 96 88 103)(72 97 89 104)(73 98 90 105)(74 99 81 106)(75 100 82 107)(76 91 83 108)(77 92 84 109)(78 93 85 110)(79 94 86 101)(80 95 87 102)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,50,25,33)(2,49,26,32)(3,48,27,31)(4,47,28,40)(5,46,29,39)(6,45,30,38)(7,44,21,37)(8,43,22,36)(9,42,23,35)(10,41,24,34)(11,138,158,145)(12,137,159,144)(13,136,160,143)(14,135,151,142)(15,134,152,141)(16,133,153,150)(17,132,154,149)(18,131,155,148)(19,140,156,147)(20,139,157,146)(51,87,68,80)(52,86,69,79)(53,85,70,78)(54,84,61,77)(55,83,62,76)(56,82,63,75)(57,81,64,74)(58,90,65,73)(59,89,66,72)(60,88,67,71)(91,115,108,122)(92,114,109,121)(93,113,110,130)(94,112,101,129)(95,111,102,128)(96,120,103,127)(97,119,104,126)(98,118,105,125)(99,117,106,124)(100,116,107,123), (1,38)(2,39)(3,40)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,37)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,141)(18,142)(19,143)(20,144)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,83)(52,84)(53,85)(54,86)(55,87)(56,88)(57,89)(58,90)(59,81)(60,82)(61,79)(62,80)(63,71)(64,72)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(91,123)(92,124)(93,125)(94,126)(95,127)(96,128)(97,129)(98,130)(99,121)(100,122)(101,119)(102,120)(103,111)(104,112)(105,113)(106,114)(107,115)(108,116)(109,117)(110,118)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,90,25,73)(2,89,26,72)(3,88,27,71)(4,87,28,80)(5,86,29,79)(6,85,30,78)(7,84,21,77)(8,83,22,76)(9,82,23,75)(10,81,24,74)(11,93,158,110)(12,92,159,109)(13,91,160,108)(14,100,151,107)(15,99,152,106)(16,98,153,105)(17,97,154,104)(18,96,155,103)(19,95,156,102)(20,94,157,101)(31,60,48,67)(32,59,49,66)(33,58,50,65)(34,57,41,64)(35,56,42,63)(36,55,43,62)(37,54,44,61)(38,53,45,70)(39,52,46,69)(40,51,47,68)(111,147,128,140)(112,146,129,139)(113,145,130,138)(114,144,121,137)(115,143,122,136)(116,142,123,135)(117,141,124,134)(118,150,125,133)(119,149,126,132)(120,148,127,131), (1,11,25,158)(2,12,26,159)(3,13,27,160)(4,14,28,151)(5,15,29,152)(6,16,30,153)(7,17,21,154)(8,18,22,155)(9,19,23,156)(10,20,24,157)(31,148,48,131)(32,149,49,132)(33,150,50,133)(34,141,41,134)(35,142,42,135)(36,143,43,136)(37,144,44,137)(38,145,45,138)(39,146,46,139)(40,147,47,140)(51,116,68,123)(52,117,69,124)(53,118,70,125)(54,119,61,126)(55,120,62,127)(56,111,63,128)(57,112,64,129)(58,113,65,130)(59,114,66,121)(60,115,67,122)(71,96,88,103)(72,97,89,104)(73,98,90,105)(74,99,81,106)(75,100,82,107)(76,91,83,108)(77,92,84,109)(78,93,85,110)(79,94,86,101)(80,95,87,102)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,50,25,33)(2,49,26,32)(3,48,27,31)(4,47,28,40)(5,46,29,39)(6,45,30,38)(7,44,21,37)(8,43,22,36)(9,42,23,35)(10,41,24,34)(11,138,158,145)(12,137,159,144)(13,136,160,143)(14,135,151,142)(15,134,152,141)(16,133,153,150)(17,132,154,149)(18,131,155,148)(19,140,156,147)(20,139,157,146)(51,87,68,80)(52,86,69,79)(53,85,70,78)(54,84,61,77)(55,83,62,76)(56,82,63,75)(57,81,64,74)(58,90,65,73)(59,89,66,72)(60,88,67,71)(91,115,108,122)(92,114,109,121)(93,113,110,130)(94,112,101,129)(95,111,102,128)(96,120,103,127)(97,119,104,126)(98,118,105,125)(99,117,106,124)(100,116,107,123), (1,38)(2,39)(3,40)(4,31)(5,32)(6,33)(7,34)(8,35)(9,36)(10,37)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,141)(18,142)(19,143)(20,144)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(51,83)(52,84)(53,85)(54,86)(55,87)(56,88)(57,89)(58,90)(59,81)(60,82)(61,79)(62,80)(63,71)(64,72)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(91,123)(92,124)(93,125)(94,126)(95,127)(96,128)(97,129)(98,130)(99,121)(100,122)(101,119)(102,120)(103,111)(104,112)(105,113)(106,114)(107,115)(108,116)(109,117)(110,118)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,90,25,73)(2,89,26,72)(3,88,27,71)(4,87,28,80)(5,86,29,79)(6,85,30,78)(7,84,21,77)(8,83,22,76)(9,82,23,75)(10,81,24,74)(11,93,158,110)(12,92,159,109)(13,91,160,108)(14,100,151,107)(15,99,152,106)(16,98,153,105)(17,97,154,104)(18,96,155,103)(19,95,156,102)(20,94,157,101)(31,60,48,67)(32,59,49,66)(33,58,50,65)(34,57,41,64)(35,56,42,63)(36,55,43,62)(37,54,44,61)(38,53,45,70)(39,52,46,69)(40,51,47,68)(111,147,128,140)(112,146,129,139)(113,145,130,138)(114,144,121,137)(115,143,122,136)(116,142,123,135)(117,141,124,134)(118,150,125,133)(119,149,126,132)(120,148,127,131), (1,11,25,158)(2,12,26,159)(3,13,27,160)(4,14,28,151)(5,15,29,152)(6,16,30,153)(7,17,21,154)(8,18,22,155)(9,19,23,156)(10,20,24,157)(31,148,48,131)(32,149,49,132)(33,150,50,133)(34,141,41,134)(35,142,42,135)(36,143,43,136)(37,144,44,137)(38,145,45,138)(39,146,46,139)(40,147,47,140)(51,116,68,123)(52,117,69,124)(53,118,70,125)(54,119,61,126)(55,120,62,127)(56,111,63,128)(57,112,64,129)(58,113,65,130)(59,114,66,121)(60,115,67,122)(71,96,88,103)(72,97,89,104)(73,98,90,105)(74,99,81,106)(75,100,82,107)(76,91,83,108)(77,92,84,109)(78,93,85,110)(79,94,86,101)(80,95,87,102) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,50,25,33),(2,49,26,32),(3,48,27,31),(4,47,28,40),(5,46,29,39),(6,45,30,38),(7,44,21,37),(8,43,22,36),(9,42,23,35),(10,41,24,34),(11,138,158,145),(12,137,159,144),(13,136,160,143),(14,135,151,142),(15,134,152,141),(16,133,153,150),(17,132,154,149),(18,131,155,148),(19,140,156,147),(20,139,157,146),(51,87,68,80),(52,86,69,79),(53,85,70,78),(54,84,61,77),(55,83,62,76),(56,82,63,75),(57,81,64,74),(58,90,65,73),(59,89,66,72),(60,88,67,71),(91,115,108,122),(92,114,109,121),(93,113,110,130),(94,112,101,129),(95,111,102,128),(96,120,103,127),(97,119,104,126),(98,118,105,125),(99,117,106,124),(100,116,107,123)], [(1,38),(2,39),(3,40),(4,31),(5,32),(6,33),(7,34),(8,35),(9,36),(10,37),(11,145),(12,146),(13,147),(14,148),(15,149),(16,150),(17,141),(18,142),(19,143),(20,144),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(51,83),(52,84),(53,85),(54,86),(55,87),(56,88),(57,89),(58,90),(59,81),(60,82),(61,79),(62,80),(63,71),(64,72),(65,73),(66,74),(67,75),(68,76),(69,77),(70,78),(91,123),(92,124),(93,125),(94,126),(95,127),(96,128),(97,129),(98,130),(99,121),(100,122),(101,119),(102,120),(103,111),(104,112),(105,113),(106,114),(107,115),(108,116),(109,117),(110,118),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,90,25,73),(2,89,26,72),(3,88,27,71),(4,87,28,80),(5,86,29,79),(6,85,30,78),(7,84,21,77),(8,83,22,76),(9,82,23,75),(10,81,24,74),(11,93,158,110),(12,92,159,109),(13,91,160,108),(14,100,151,107),(15,99,152,106),(16,98,153,105),(17,97,154,104),(18,96,155,103),(19,95,156,102),(20,94,157,101),(31,60,48,67),(32,59,49,66),(33,58,50,65),(34,57,41,64),(35,56,42,63),(36,55,43,62),(37,54,44,61),(38,53,45,70),(39,52,46,69),(40,51,47,68),(111,147,128,140),(112,146,129,139),(113,145,130,138),(114,144,121,137),(115,143,122,136),(116,142,123,135),(117,141,124,134),(118,150,125,133),(119,149,126,132),(120,148,127,131)], [(1,11,25,158),(2,12,26,159),(3,13,27,160),(4,14,28,151),(5,15,29,152),(6,16,30,153),(7,17,21,154),(8,18,22,155),(9,19,23,156),(10,20,24,157),(31,148,48,131),(32,149,49,132),(33,150,50,133),(34,141,41,134),(35,142,42,135),(36,143,43,136),(37,144,44,137),(38,145,45,138),(39,146,46,139),(40,147,47,140),(51,116,68,123),(52,117,69,124),(53,118,70,125),(54,119,61,126),(55,120,62,127),(56,111,63,128),(57,112,64,129),(58,113,65,130),(59,114,66,121),(60,115,67,122),(71,96,88,103),(72,97,89,104),(73,98,90,105),(74,99,81,106),(75,100,82,107),(76,91,83,108),(77,92,84,109),(78,93,85,110),(79,94,86,101),(80,95,87,102)]])

47 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4K5A5B10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order1222222244444···45510···10101010101010101020···2020202020
size111144420444420···20222···2444488884···48888

47 irreducible representations

dim1111111111111222224444
type+++++++++++++++++++--
imageC1C2C2C2C2C2C2C2C2C2C2C2C2D5D10D10D10D102+ 1+42- 1+4D46D10D4.10D10
kernelC10.742- 1+4Dic5.14D4D10.12D4Dic5.5D4Dic5.Q8D10⋊Q8C20.48D4C23.23D10C23.18D10C20.17D4C202D4Dic5⋊D4C5×C4⋊D4C4⋊D4C22⋊C4C4⋊C4C22×C4C2×D4C10C10C2C2
# reps1211111121121242262184

Matrix representation of C10.742- 1+4 in GL8(𝔽41)

400000000
040000000
004000000
000400000
00000600
000034700
00000006
000000347
,
040000000
10000000
000400000
00100000
000000740
000000734
000074000
000073400
,
01000000
10000000
00010000
00100000
00000010
00000001
00001000
00000100
,
000400000
00100000
040000000
10000000
00002294035
0000219261
0000161932
000015403922
,
00010000
00100000
040000000
400000000
000017600
0000342400
000000176
0000003424

G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,34,0,0,0,0,0,0,6,7,0,0,0,0,0,0,0,0,0,34,0,0,0,0,0,0,6,7],[0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,7,7,0,0,0,0,0,0,40,34,0,0,0,0,7,7,0,0,0,0,0,0,40,34,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,22,2,1,15,0,0,0,0,9,19,6,40,0,0,0,0,40,26,19,39,0,0,0,0,35,1,32,22],[0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,17,34,0,0,0,0,0,0,6,24,0,0,0,0,0,0,0,0,17,34,0,0,0,0,0,0,6,24] >;

C10.742- 1+4 in GAP, Magma, Sage, TeX

C_{10}._{74}2_-^{1+4}
% in TeX

G:=Group("C10.74ES-(2,2)");
// GroupNames label

G:=SmallGroup(320,1293);
// by ID

G=gap.SmallGroup(320,1293);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,219,1571,570,297,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=c^2=1,d^2=e^2=b^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,e*b*e^-1=a^5*b,d*c*d^-1=a^5*c,c*e=e*c,e*d*e^-1=a^5*b^2*d>;
// generators/relations

׿
×
𝔽