metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C10.502+ 1+4, C10.752- 1+4, C20⋊Q8⋊23C2, C4⋊C4.94D10, (C2×Dic5)⋊4Q8, C22⋊Q8.8D5, C22.6(Q8×D5), (C2×Q8).74D10, Dic5.4(C2×Q8), (C2×C20).49C23, C22⋊C4.53D10, Dic5⋊Q8⋊12C2, C10.33(C22×Q8), (C2×C10).167C24, (C22×C4).232D10, C4⋊Dic5.47C22, C2.52(D4⋊6D10), Dic5.Q8⋊16C2, C20.48D4.19C2, (Q8×C10).102C22, C22.188(C23×D5), C23.185(C22×D5), C23.D5.31C22, (C22×C20).314C22, (C22×C10).195C23, Dic5.14D4.3C2, C5⋊3(C23.41C23), (C4×Dic5).109C22, (C2×Dic5).241C23, C23.11D10.2C2, C2.33(D4.10D10), (C2×Dic10).164C22, C10.D4.161C22, (C22×Dic5).117C22, C2.16(C2×Q8×D5), (C2×C10).6(C2×Q8), (C5×C22⋊Q8).8C2, (C5×C4⋊C4).153C22, (C2×C4).181(C22×D5), (C2×C10.D4).25C2, (C5×C22⋊C4).22C22, SmallGroup(320,1295)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C10.502+ 1+4
G = < a,b,c,d,e | a10=b4=e2=1, c2=a5, d2=a5b2, bab-1=a-1, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, dcd-1=a5c, ce=ec, ede=b2d >
Subgroups: 622 in 206 conjugacy classes, 103 normal (31 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, Q8, C23, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2×Q8, Dic5, Dic5, C20, C2×C10, C2×C10, C2×C10, C2×C4⋊C4, C42⋊C2, C22⋊Q8, C22⋊Q8, C42.C2, C4⋊Q8, Dic10, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C2×C20, C5×Q8, C22×C10, C23.41C23, C4×Dic5, C10.D4, C4⋊Dic5, C4⋊Dic5, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C2×Dic10, C22×Dic5, C22×C20, Q8×C10, C23.11D10, Dic5.14D4, C20⋊Q8, Dic5.Q8, C2×C10.D4, C20.48D4, Dic5⋊Q8, C5×C22⋊Q8, C10.502+ 1+4
Quotients: C1, C2, C22, Q8, C23, D5, C2×Q8, C24, D10, C22×Q8, 2+ 1+4, 2- 1+4, C22×D5, C23.41C23, Q8×D5, C23×D5, D4⋊6D10, C2×Q8×D5, D4.10D10, C10.502+ 1+4
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 105 30 100)(2 104 21 99)(3 103 22 98)(4 102 23 97)(5 101 24 96)(6 110 25 95)(7 109 26 94)(8 108 27 93)(9 107 28 92)(10 106 29 91)(11 90 151 79)(12 89 152 78)(13 88 153 77)(14 87 154 76)(15 86 155 75)(16 85 156 74)(17 84 157 73)(18 83 158 72)(19 82 159 71)(20 81 160 80)(31 124 41 119)(32 123 42 118)(33 122 43 117)(34 121 44 116)(35 130 45 115)(36 129 46 114)(37 128 47 113)(38 127 48 112)(39 126 49 111)(40 125 50 120)(51 144 61 139)(52 143 62 138)(53 142 63 137)(54 141 64 136)(55 150 65 135)(56 149 66 134)(57 148 67 133)(58 147 68 132)(59 146 69 131)(60 145 70 140)
(1 35 6 40)(2 36 7 31)(3 37 8 32)(4 38 9 33)(5 39 10 34)(11 136 16 131)(12 137 17 132)(13 138 18 133)(14 139 19 134)(15 140 20 135)(21 46 26 41)(22 47 27 42)(23 48 28 43)(24 49 29 44)(25 50 30 45)(51 71 56 76)(52 72 57 77)(53 73 58 78)(54 74 59 79)(55 75 60 80)(61 82 66 87)(62 83 67 88)(63 84 68 89)(64 85 69 90)(65 86 70 81)(91 121 96 126)(92 122 97 127)(93 123 98 128)(94 124 99 129)(95 125 100 130)(101 111 106 116)(102 112 107 117)(103 113 108 118)(104 114 109 119)(105 115 110 120)(141 156 146 151)(142 157 147 152)(143 158 148 153)(144 159 149 154)(145 160 150 155)
(1 65 25 60)(2 66 26 51)(3 67 27 52)(4 68 28 53)(5 69 29 54)(6 70 30 55)(7 61 21 56)(8 62 22 57)(9 63 23 58)(10 64 24 59)(11 126 156 116)(12 127 157 117)(13 128 158 118)(14 129 159 119)(15 130 160 120)(16 121 151 111)(17 122 152 112)(18 123 153 113)(19 124 154 114)(20 125 155 115)(31 87 46 71)(32 88 47 72)(33 89 48 73)(34 90 49 74)(35 81 50 75)(36 82 41 76)(37 83 42 77)(38 84 43 78)(39 85 44 79)(40 86 45 80)(91 141 101 131)(92 142 102 132)(93 143 103 133)(94 144 104 134)(95 145 105 135)(96 146 106 136)(97 147 107 137)(98 148 108 138)(99 149 109 139)(100 150 110 140)
(11 151)(12 152)(13 153)(14 154)(15 155)(16 156)(17 157)(18 158)(19 159)(20 160)(51 61)(52 62)(53 63)(54 64)(55 65)(56 66)(57 67)(58 68)(59 69)(60 70)(71 82)(72 83)(73 84)(74 85)(75 86)(76 87)(77 88)(78 89)(79 90)(80 81)(131 146)(132 147)(133 148)(134 149)(135 150)(136 141)(137 142)(138 143)(139 144)(140 145)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,105,30,100)(2,104,21,99)(3,103,22,98)(4,102,23,97)(5,101,24,96)(6,110,25,95)(7,109,26,94)(8,108,27,93)(9,107,28,92)(10,106,29,91)(11,90,151,79)(12,89,152,78)(13,88,153,77)(14,87,154,76)(15,86,155,75)(16,85,156,74)(17,84,157,73)(18,83,158,72)(19,82,159,71)(20,81,160,80)(31,124,41,119)(32,123,42,118)(33,122,43,117)(34,121,44,116)(35,130,45,115)(36,129,46,114)(37,128,47,113)(38,127,48,112)(39,126,49,111)(40,125,50,120)(51,144,61,139)(52,143,62,138)(53,142,63,137)(54,141,64,136)(55,150,65,135)(56,149,66,134)(57,148,67,133)(58,147,68,132)(59,146,69,131)(60,145,70,140), (1,35,6,40)(2,36,7,31)(3,37,8,32)(4,38,9,33)(5,39,10,34)(11,136,16,131)(12,137,17,132)(13,138,18,133)(14,139,19,134)(15,140,20,135)(21,46,26,41)(22,47,27,42)(23,48,28,43)(24,49,29,44)(25,50,30,45)(51,71,56,76)(52,72,57,77)(53,73,58,78)(54,74,59,79)(55,75,60,80)(61,82,66,87)(62,83,67,88)(63,84,68,89)(64,85,69,90)(65,86,70,81)(91,121,96,126)(92,122,97,127)(93,123,98,128)(94,124,99,129)(95,125,100,130)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120)(141,156,146,151)(142,157,147,152)(143,158,148,153)(144,159,149,154)(145,160,150,155), (1,65,25,60)(2,66,26,51)(3,67,27,52)(4,68,28,53)(5,69,29,54)(6,70,30,55)(7,61,21,56)(8,62,22,57)(9,63,23,58)(10,64,24,59)(11,126,156,116)(12,127,157,117)(13,128,158,118)(14,129,159,119)(15,130,160,120)(16,121,151,111)(17,122,152,112)(18,123,153,113)(19,124,154,114)(20,125,155,115)(31,87,46,71)(32,88,47,72)(33,89,48,73)(34,90,49,74)(35,81,50,75)(36,82,41,76)(37,83,42,77)(38,84,43,78)(39,85,44,79)(40,86,45,80)(91,141,101,131)(92,142,102,132)(93,143,103,133)(94,144,104,134)(95,145,105,135)(96,146,106,136)(97,147,107,137)(98,148,108,138)(99,149,109,139)(100,150,110,140), (11,151)(12,152)(13,153)(14,154)(15,155)(16,156)(17,157)(18,158)(19,159)(20,160)(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(57,67)(58,68)(59,69)(60,70)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88)(78,89)(79,90)(80,81)(131,146)(132,147)(133,148)(134,149)(135,150)(136,141)(137,142)(138,143)(139,144)(140,145)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,105,30,100)(2,104,21,99)(3,103,22,98)(4,102,23,97)(5,101,24,96)(6,110,25,95)(7,109,26,94)(8,108,27,93)(9,107,28,92)(10,106,29,91)(11,90,151,79)(12,89,152,78)(13,88,153,77)(14,87,154,76)(15,86,155,75)(16,85,156,74)(17,84,157,73)(18,83,158,72)(19,82,159,71)(20,81,160,80)(31,124,41,119)(32,123,42,118)(33,122,43,117)(34,121,44,116)(35,130,45,115)(36,129,46,114)(37,128,47,113)(38,127,48,112)(39,126,49,111)(40,125,50,120)(51,144,61,139)(52,143,62,138)(53,142,63,137)(54,141,64,136)(55,150,65,135)(56,149,66,134)(57,148,67,133)(58,147,68,132)(59,146,69,131)(60,145,70,140), (1,35,6,40)(2,36,7,31)(3,37,8,32)(4,38,9,33)(5,39,10,34)(11,136,16,131)(12,137,17,132)(13,138,18,133)(14,139,19,134)(15,140,20,135)(21,46,26,41)(22,47,27,42)(23,48,28,43)(24,49,29,44)(25,50,30,45)(51,71,56,76)(52,72,57,77)(53,73,58,78)(54,74,59,79)(55,75,60,80)(61,82,66,87)(62,83,67,88)(63,84,68,89)(64,85,69,90)(65,86,70,81)(91,121,96,126)(92,122,97,127)(93,123,98,128)(94,124,99,129)(95,125,100,130)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120)(141,156,146,151)(142,157,147,152)(143,158,148,153)(144,159,149,154)(145,160,150,155), (1,65,25,60)(2,66,26,51)(3,67,27,52)(4,68,28,53)(5,69,29,54)(6,70,30,55)(7,61,21,56)(8,62,22,57)(9,63,23,58)(10,64,24,59)(11,126,156,116)(12,127,157,117)(13,128,158,118)(14,129,159,119)(15,130,160,120)(16,121,151,111)(17,122,152,112)(18,123,153,113)(19,124,154,114)(20,125,155,115)(31,87,46,71)(32,88,47,72)(33,89,48,73)(34,90,49,74)(35,81,50,75)(36,82,41,76)(37,83,42,77)(38,84,43,78)(39,85,44,79)(40,86,45,80)(91,141,101,131)(92,142,102,132)(93,143,103,133)(94,144,104,134)(95,145,105,135)(96,146,106,136)(97,147,107,137)(98,148,108,138)(99,149,109,139)(100,150,110,140), (11,151)(12,152)(13,153)(14,154)(15,155)(16,156)(17,157)(18,158)(19,159)(20,160)(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(57,67)(58,68)(59,69)(60,70)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88)(78,89)(79,90)(80,81)(131,146)(132,147)(133,148)(134,149)(135,150)(136,141)(137,142)(138,143)(139,144)(140,145) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,105,30,100),(2,104,21,99),(3,103,22,98),(4,102,23,97),(5,101,24,96),(6,110,25,95),(7,109,26,94),(8,108,27,93),(9,107,28,92),(10,106,29,91),(11,90,151,79),(12,89,152,78),(13,88,153,77),(14,87,154,76),(15,86,155,75),(16,85,156,74),(17,84,157,73),(18,83,158,72),(19,82,159,71),(20,81,160,80),(31,124,41,119),(32,123,42,118),(33,122,43,117),(34,121,44,116),(35,130,45,115),(36,129,46,114),(37,128,47,113),(38,127,48,112),(39,126,49,111),(40,125,50,120),(51,144,61,139),(52,143,62,138),(53,142,63,137),(54,141,64,136),(55,150,65,135),(56,149,66,134),(57,148,67,133),(58,147,68,132),(59,146,69,131),(60,145,70,140)], [(1,35,6,40),(2,36,7,31),(3,37,8,32),(4,38,9,33),(5,39,10,34),(11,136,16,131),(12,137,17,132),(13,138,18,133),(14,139,19,134),(15,140,20,135),(21,46,26,41),(22,47,27,42),(23,48,28,43),(24,49,29,44),(25,50,30,45),(51,71,56,76),(52,72,57,77),(53,73,58,78),(54,74,59,79),(55,75,60,80),(61,82,66,87),(62,83,67,88),(63,84,68,89),(64,85,69,90),(65,86,70,81),(91,121,96,126),(92,122,97,127),(93,123,98,128),(94,124,99,129),(95,125,100,130),(101,111,106,116),(102,112,107,117),(103,113,108,118),(104,114,109,119),(105,115,110,120),(141,156,146,151),(142,157,147,152),(143,158,148,153),(144,159,149,154),(145,160,150,155)], [(1,65,25,60),(2,66,26,51),(3,67,27,52),(4,68,28,53),(5,69,29,54),(6,70,30,55),(7,61,21,56),(8,62,22,57),(9,63,23,58),(10,64,24,59),(11,126,156,116),(12,127,157,117),(13,128,158,118),(14,129,159,119),(15,130,160,120),(16,121,151,111),(17,122,152,112),(18,123,153,113),(19,124,154,114),(20,125,155,115),(31,87,46,71),(32,88,47,72),(33,89,48,73),(34,90,49,74),(35,81,50,75),(36,82,41,76),(37,83,42,77),(38,84,43,78),(39,85,44,79),(40,86,45,80),(91,141,101,131),(92,142,102,132),(93,143,103,133),(94,144,104,134),(95,145,105,135),(96,146,106,136),(97,147,107,137),(98,148,108,138),(99,149,109,139),(100,150,110,140)], [(11,151),(12,152),(13,153),(14,154),(15,155),(16,156),(17,157),(18,158),(19,159),(20,160),(51,61),(52,62),(53,63),(54,64),(55,65),(56,66),(57,67),(58,68),(59,69),(60,70),(71,82),(72,83),(73,84),(74,85),(75,86),(76,87),(77,88),(78,89),(79,90),(80,81),(131,146),(132,147),(133,148),(134,149),(135,150),(136,141),(137,142),(138,143),(139,144),(140,145)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | ··· | 4F | 4G | 4H | 4I | 4J | 4K | ··· | 4P | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20H | 20I | ··· | 20P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | + | + | + | + | + | - | - | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | Q8 | D5 | D10 | D10 | D10 | D10 | 2+ 1+4 | 2- 1+4 | Q8×D5 | D4⋊6D10 | D4.10D10 |
kernel | C10.502+ 1+4 | C23.11D10 | Dic5.14D4 | C20⋊Q8 | Dic5.Q8 | C2×C10.D4 | C20.48D4 | Dic5⋊Q8 | C5×C22⋊Q8 | C2×Dic5 | C22⋊Q8 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×Q8 | C10 | C10 | C22 | C2 | C2 |
# reps | 1 | 2 | 2 | 2 | 4 | 1 | 1 | 2 | 1 | 4 | 2 | 4 | 6 | 2 | 2 | 1 | 1 | 4 | 4 | 4 |
Matrix representation of C10.502+ 1+4 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 34 | 0 | 0 |
0 | 0 | 7 | 34 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 34 |
0 | 0 | 0 | 0 | 7 | 34 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 24 | 40 | 0 | 0 |
0 | 0 | 3 | 17 | 0 | 0 |
0 | 0 | 2 | 0 | 24 | 40 |
0 | 0 | 14 | 39 | 3 | 17 |
1 | 37 | 0 | 0 | 0 | 0 |
21 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 9 | 0 | 0 |
0 | 0 | 32 | 11 | 0 | 0 |
0 | 0 | 27 | 15 | 11 | 32 |
0 | 0 | 26 | 9 | 9 | 30 |
32 | 36 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 22 | 2 | 39 | 0 |
0 | 0 | 39 | 36 | 0 | 39 |
0 | 0 | 14 | 17 | 19 | 39 |
0 | 0 | 24 | 10 | 2 | 5 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 22 | 2 | 40 | 0 |
0 | 0 | 39 | 36 | 0 | 40 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,7,0,0,0,0,34,34,0,0,0,0,0,0,1,7,0,0,0,0,34,34],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,24,3,2,14,0,0,40,17,0,39,0,0,0,0,24,3,0,0,0,0,40,17],[1,21,0,0,0,0,37,40,0,0,0,0,0,0,30,32,27,26,0,0,9,11,15,9,0,0,0,0,11,9,0,0,0,0,32,30],[32,0,0,0,0,0,36,9,0,0,0,0,0,0,22,39,14,24,0,0,2,36,17,10,0,0,39,0,19,2,0,0,0,39,39,5],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,22,39,0,0,0,1,2,36,0,0,0,0,40,0,0,0,0,0,0,40] >;
C10.502+ 1+4 in GAP, Magma, Sage, TeX
C_{10}._{50}2_+^{1+4}
% in TeX
G:=Group("C10.50ES+(2,2)");
// GroupNames label
G:=SmallGroup(320,1295);
// by ID
G=gap.SmallGroup(320,1295);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,387,100,1123,185,80,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^10=b^4=e^2=1,c^2=a^5,d^2=a^5*b^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=a^5*c,c*e=e*c,e*d*e=b^2*d>;
// generators/relations