Copied to
clipboard

G = C10.242- 1+4order 320 = 26·5

24th non-split extension by C10 of 2- 1+4 acting via 2- 1+4/C2×Q8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.242- 1+4, C10.1192+ 1+4, C20⋊Q828C2, C4⋊C4.99D10, C22⋊Q820D5, (Q8×Dic5)⋊17C2, D208C430C2, D102Q829C2, C207D4.16C2, (C2×Q8).133D10, C22⋊C4.22D10, C20.214(C4○D4), C20.23D416C2, C4.73(D42D5), (C2×C20).175C23, (C2×C10).187C24, (C22×C4).249D10, D10.12D427C2, C2.37(D48D10), Dic5.5D427C2, (C2×D20).159C22, C4⋊Dic5.312C22, (Q8×C10).117C22, (C2×Dic5).94C23, (C22×D5).78C23, C22.208(C23×D5), C23.125(C22×D5), D10⋊C4.28C22, C23.21D1031C2, (C22×C20).262C22, (C22×C10).215C23, C56(C22.36C24), (C4×Dic5).123C22, C10.D4.35C22, C23.D5.126C22, C2.25(Q8.10D10), (C2×Dic10).170C22, C4⋊C4⋊D522C2, C10.91(C2×C4○D4), (C5×C22⋊Q8)⋊23C2, C2.50(C2×D42D5), (C2×C4×D5).113C22, (C5×C4⋊C4).168C22, (C2×C4).593(C22×D5), (C2×C5⋊D4).39C22, (C5×C22⋊C4).42C22, SmallGroup(320,1315)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.242- 1+4
C1C5C10C2×C10C22×D5C2×C4×D5D10.12D4 — C10.242- 1+4
C5C2×C10 — C10.242- 1+4
C1C22C22⋊Q8

Generators and relations for C10.242- 1+4
 G = < a,b,c,d,e | a10=b4=c2=1, d2=b2, e2=a5b2, bab-1=cac=a-1, ad=da, ae=ea, cbc=b-1, dbd-1=ebe-1=a5b, cd=dc, ece-1=a5c, ede-1=b2d >

Subgroups: 766 in 216 conjugacy classes, 95 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C2×Q8, Dic5, C20, C20, D10, C2×C10, C2×C10, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C422C2, C4⋊Q8, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×Q8, C22×D5, C22×C10, C22.36C24, C4×Dic5, C4×Dic5, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C2×C5⋊D4, C22×C20, Q8×C10, D10.12D4, Dic5.5D4, C20⋊Q8, D208C4, D102Q8, C4⋊C4⋊D5, C23.21D10, C207D4, Q8×Dic5, C20.23D4, C5×C22⋊Q8, C10.242- 1+4
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, 2- 1+4, C22×D5, C22.36C24, D42D5, C23×D5, C2×D42D5, Q8.10D10, D48D10, C10.242- 1+4

Smallest permutation representation of C10.242- 1+4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 40 30 50)(2 39 21 49)(3 38 22 48)(4 37 23 47)(5 36 24 46)(6 35 25 45)(7 34 26 44)(8 33 27 43)(9 32 28 42)(10 31 29 41)(11 135 155 145)(12 134 156 144)(13 133 157 143)(14 132 158 142)(15 131 159 141)(16 140 160 150)(17 139 151 149)(18 138 152 148)(19 137 153 147)(20 136 154 146)(51 89 61 79)(52 88 62 78)(53 87 63 77)(54 86 64 76)(55 85 65 75)(56 84 66 74)(57 83 67 73)(58 82 68 72)(59 81 69 71)(60 90 70 80)(91 129 101 119)(92 128 102 118)(93 127 103 117)(94 126 104 116)(95 125 105 115)(96 124 106 114)(97 123 107 113)(98 122 108 112)(99 121 109 111)(100 130 110 120)
(1 80)(2 79)(3 78)(4 77)(5 76)(6 75)(7 74)(8 73)(9 72)(10 71)(11 100)(12 99)(13 98)(14 97)(15 96)(16 95)(17 94)(18 93)(19 92)(20 91)(21 89)(22 88)(23 87)(24 86)(25 85)(26 84)(27 83)(28 82)(29 81)(30 90)(31 69)(32 68)(33 67)(34 66)(35 65)(36 64)(37 63)(38 62)(39 61)(40 70)(41 59)(42 58)(43 57)(44 56)(45 55)(46 54)(47 53)(48 52)(49 51)(50 60)(101 154)(102 153)(103 152)(104 151)(105 160)(106 159)(107 158)(108 157)(109 156)(110 155)(111 134)(112 133)(113 132)(114 131)(115 140)(116 139)(117 138)(118 137)(119 136)(120 135)(121 144)(122 143)(123 142)(124 141)(125 150)(126 149)(127 148)(128 147)(129 146)(130 145)
(1 155 30 11)(2 156 21 12)(3 157 22 13)(4 158 23 14)(5 159 24 15)(6 160 25 16)(7 151 26 17)(8 152 27 18)(9 153 28 19)(10 154 29 20)(31 141 41 131)(32 142 42 132)(33 143 43 133)(34 144 44 134)(35 145 45 135)(36 146 46 136)(37 147 47 137)(38 148 48 138)(39 149 49 139)(40 150 50 140)(51 116 61 126)(52 117 62 127)(53 118 63 128)(54 119 64 129)(55 120 65 130)(56 111 66 121)(57 112 67 122)(58 113 68 123)(59 114 69 124)(60 115 70 125)(71 101 81 91)(72 102 82 92)(73 103 83 93)(74 104 84 94)(75 105 85 95)(76 106 86 96)(77 107 87 97)(78 108 88 98)(79 109 89 99)(80 110 90 100)
(1 50 25 35)(2 41 26 36)(3 42 27 37)(4 43 28 38)(5 44 29 39)(6 45 30 40)(7 46 21 31)(8 47 22 32)(9 48 23 33)(10 49 24 34)(11 140 160 145)(12 131 151 146)(13 132 152 147)(14 133 153 148)(15 134 154 149)(16 135 155 150)(17 136 156 141)(18 137 157 142)(19 138 158 143)(20 139 159 144)(51 81 66 76)(52 82 67 77)(53 83 68 78)(54 84 69 79)(55 85 70 80)(56 86 61 71)(57 87 62 72)(58 88 63 73)(59 89 64 74)(60 90 65 75)(91 111 106 126)(92 112 107 127)(93 113 108 128)(94 114 109 129)(95 115 110 130)(96 116 101 121)(97 117 102 122)(98 118 103 123)(99 119 104 124)(100 120 105 125)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,40,30,50)(2,39,21,49)(3,38,22,48)(4,37,23,47)(5,36,24,46)(6,35,25,45)(7,34,26,44)(8,33,27,43)(9,32,28,42)(10,31,29,41)(11,135,155,145)(12,134,156,144)(13,133,157,143)(14,132,158,142)(15,131,159,141)(16,140,160,150)(17,139,151,149)(18,138,152,148)(19,137,153,147)(20,136,154,146)(51,89,61,79)(52,88,62,78)(53,87,63,77)(54,86,64,76)(55,85,65,75)(56,84,66,74)(57,83,67,73)(58,82,68,72)(59,81,69,71)(60,90,70,80)(91,129,101,119)(92,128,102,118)(93,127,103,117)(94,126,104,116)(95,125,105,115)(96,124,106,114)(97,123,107,113)(98,122,108,112)(99,121,109,111)(100,130,110,120), (1,80)(2,79)(3,78)(4,77)(5,76)(6,75)(7,74)(8,73)(9,72)(10,71)(11,100)(12,99)(13,98)(14,97)(15,96)(16,95)(17,94)(18,93)(19,92)(20,91)(21,89)(22,88)(23,87)(24,86)(25,85)(26,84)(27,83)(28,82)(29,81)(30,90)(31,69)(32,68)(33,67)(34,66)(35,65)(36,64)(37,63)(38,62)(39,61)(40,70)(41,59)(42,58)(43,57)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(50,60)(101,154)(102,153)(103,152)(104,151)(105,160)(106,159)(107,158)(108,157)(109,156)(110,155)(111,134)(112,133)(113,132)(114,131)(115,140)(116,139)(117,138)(118,137)(119,136)(120,135)(121,144)(122,143)(123,142)(124,141)(125,150)(126,149)(127,148)(128,147)(129,146)(130,145), (1,155,30,11)(2,156,21,12)(3,157,22,13)(4,158,23,14)(5,159,24,15)(6,160,25,16)(7,151,26,17)(8,152,27,18)(9,153,28,19)(10,154,29,20)(31,141,41,131)(32,142,42,132)(33,143,43,133)(34,144,44,134)(35,145,45,135)(36,146,46,136)(37,147,47,137)(38,148,48,138)(39,149,49,139)(40,150,50,140)(51,116,61,126)(52,117,62,127)(53,118,63,128)(54,119,64,129)(55,120,65,130)(56,111,66,121)(57,112,67,122)(58,113,68,123)(59,114,69,124)(60,115,70,125)(71,101,81,91)(72,102,82,92)(73,103,83,93)(74,104,84,94)(75,105,85,95)(76,106,86,96)(77,107,87,97)(78,108,88,98)(79,109,89,99)(80,110,90,100), (1,50,25,35)(2,41,26,36)(3,42,27,37)(4,43,28,38)(5,44,29,39)(6,45,30,40)(7,46,21,31)(8,47,22,32)(9,48,23,33)(10,49,24,34)(11,140,160,145)(12,131,151,146)(13,132,152,147)(14,133,153,148)(15,134,154,149)(16,135,155,150)(17,136,156,141)(18,137,157,142)(19,138,158,143)(20,139,159,144)(51,81,66,76)(52,82,67,77)(53,83,68,78)(54,84,69,79)(55,85,70,80)(56,86,61,71)(57,87,62,72)(58,88,63,73)(59,89,64,74)(60,90,65,75)(91,111,106,126)(92,112,107,127)(93,113,108,128)(94,114,109,129)(95,115,110,130)(96,116,101,121)(97,117,102,122)(98,118,103,123)(99,119,104,124)(100,120,105,125)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,40,30,50)(2,39,21,49)(3,38,22,48)(4,37,23,47)(5,36,24,46)(6,35,25,45)(7,34,26,44)(8,33,27,43)(9,32,28,42)(10,31,29,41)(11,135,155,145)(12,134,156,144)(13,133,157,143)(14,132,158,142)(15,131,159,141)(16,140,160,150)(17,139,151,149)(18,138,152,148)(19,137,153,147)(20,136,154,146)(51,89,61,79)(52,88,62,78)(53,87,63,77)(54,86,64,76)(55,85,65,75)(56,84,66,74)(57,83,67,73)(58,82,68,72)(59,81,69,71)(60,90,70,80)(91,129,101,119)(92,128,102,118)(93,127,103,117)(94,126,104,116)(95,125,105,115)(96,124,106,114)(97,123,107,113)(98,122,108,112)(99,121,109,111)(100,130,110,120), (1,80)(2,79)(3,78)(4,77)(5,76)(6,75)(7,74)(8,73)(9,72)(10,71)(11,100)(12,99)(13,98)(14,97)(15,96)(16,95)(17,94)(18,93)(19,92)(20,91)(21,89)(22,88)(23,87)(24,86)(25,85)(26,84)(27,83)(28,82)(29,81)(30,90)(31,69)(32,68)(33,67)(34,66)(35,65)(36,64)(37,63)(38,62)(39,61)(40,70)(41,59)(42,58)(43,57)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(50,60)(101,154)(102,153)(103,152)(104,151)(105,160)(106,159)(107,158)(108,157)(109,156)(110,155)(111,134)(112,133)(113,132)(114,131)(115,140)(116,139)(117,138)(118,137)(119,136)(120,135)(121,144)(122,143)(123,142)(124,141)(125,150)(126,149)(127,148)(128,147)(129,146)(130,145), (1,155,30,11)(2,156,21,12)(3,157,22,13)(4,158,23,14)(5,159,24,15)(6,160,25,16)(7,151,26,17)(8,152,27,18)(9,153,28,19)(10,154,29,20)(31,141,41,131)(32,142,42,132)(33,143,43,133)(34,144,44,134)(35,145,45,135)(36,146,46,136)(37,147,47,137)(38,148,48,138)(39,149,49,139)(40,150,50,140)(51,116,61,126)(52,117,62,127)(53,118,63,128)(54,119,64,129)(55,120,65,130)(56,111,66,121)(57,112,67,122)(58,113,68,123)(59,114,69,124)(60,115,70,125)(71,101,81,91)(72,102,82,92)(73,103,83,93)(74,104,84,94)(75,105,85,95)(76,106,86,96)(77,107,87,97)(78,108,88,98)(79,109,89,99)(80,110,90,100), (1,50,25,35)(2,41,26,36)(3,42,27,37)(4,43,28,38)(5,44,29,39)(6,45,30,40)(7,46,21,31)(8,47,22,32)(9,48,23,33)(10,49,24,34)(11,140,160,145)(12,131,151,146)(13,132,152,147)(14,133,153,148)(15,134,154,149)(16,135,155,150)(17,136,156,141)(18,137,157,142)(19,138,158,143)(20,139,159,144)(51,81,66,76)(52,82,67,77)(53,83,68,78)(54,84,69,79)(55,85,70,80)(56,86,61,71)(57,87,62,72)(58,88,63,73)(59,89,64,74)(60,90,65,75)(91,111,106,126)(92,112,107,127)(93,113,108,128)(94,114,109,129)(95,115,110,130)(96,116,101,121)(97,117,102,122)(98,118,103,123)(99,119,104,124)(100,120,105,125) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,40,30,50),(2,39,21,49),(3,38,22,48),(4,37,23,47),(5,36,24,46),(6,35,25,45),(7,34,26,44),(8,33,27,43),(9,32,28,42),(10,31,29,41),(11,135,155,145),(12,134,156,144),(13,133,157,143),(14,132,158,142),(15,131,159,141),(16,140,160,150),(17,139,151,149),(18,138,152,148),(19,137,153,147),(20,136,154,146),(51,89,61,79),(52,88,62,78),(53,87,63,77),(54,86,64,76),(55,85,65,75),(56,84,66,74),(57,83,67,73),(58,82,68,72),(59,81,69,71),(60,90,70,80),(91,129,101,119),(92,128,102,118),(93,127,103,117),(94,126,104,116),(95,125,105,115),(96,124,106,114),(97,123,107,113),(98,122,108,112),(99,121,109,111),(100,130,110,120)], [(1,80),(2,79),(3,78),(4,77),(5,76),(6,75),(7,74),(8,73),(9,72),(10,71),(11,100),(12,99),(13,98),(14,97),(15,96),(16,95),(17,94),(18,93),(19,92),(20,91),(21,89),(22,88),(23,87),(24,86),(25,85),(26,84),(27,83),(28,82),(29,81),(30,90),(31,69),(32,68),(33,67),(34,66),(35,65),(36,64),(37,63),(38,62),(39,61),(40,70),(41,59),(42,58),(43,57),(44,56),(45,55),(46,54),(47,53),(48,52),(49,51),(50,60),(101,154),(102,153),(103,152),(104,151),(105,160),(106,159),(107,158),(108,157),(109,156),(110,155),(111,134),(112,133),(113,132),(114,131),(115,140),(116,139),(117,138),(118,137),(119,136),(120,135),(121,144),(122,143),(123,142),(124,141),(125,150),(126,149),(127,148),(128,147),(129,146),(130,145)], [(1,155,30,11),(2,156,21,12),(3,157,22,13),(4,158,23,14),(5,159,24,15),(6,160,25,16),(7,151,26,17),(8,152,27,18),(9,153,28,19),(10,154,29,20),(31,141,41,131),(32,142,42,132),(33,143,43,133),(34,144,44,134),(35,145,45,135),(36,146,46,136),(37,147,47,137),(38,148,48,138),(39,149,49,139),(40,150,50,140),(51,116,61,126),(52,117,62,127),(53,118,63,128),(54,119,64,129),(55,120,65,130),(56,111,66,121),(57,112,67,122),(58,113,68,123),(59,114,69,124),(60,115,70,125),(71,101,81,91),(72,102,82,92),(73,103,83,93),(74,104,84,94),(75,105,85,95),(76,106,86,96),(77,107,87,97),(78,108,88,98),(79,109,89,99),(80,110,90,100)], [(1,50,25,35),(2,41,26,36),(3,42,27,37),(4,43,28,38),(5,44,29,39),(6,45,30,40),(7,46,21,31),(8,47,22,32),(9,48,23,33),(10,49,24,34),(11,140,160,145),(12,131,151,146),(13,132,152,147),(14,133,153,148),(15,134,154,149),(16,135,155,150),(17,136,156,141),(18,137,157,142),(19,138,158,143),(20,139,159,144),(51,81,66,76),(52,82,67,77),(53,83,68,78),(54,84,69,79),(55,85,70,80),(56,86,61,71),(57,87,62,72),(58,88,63,73),(59,89,64,74),(60,90,65,75),(91,111,106,126),(92,112,107,127),(93,113,108,128),(94,114,109,129),(95,115,110,130),(96,116,101,121),(97,117,102,122),(98,118,103,123),(99,119,104,124),(100,120,105,125)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C···4G4H4I4J4K4L4M4N4O5A5B10A···10F10G10H10I10J20A···20H20I···20P
order1222222444···4444444445510···101010101020···2020···20
size111142020224···41010101020202020222···244444···48···8

50 irreducible representations

dim11111111111122222244444
type++++++++++++++++++--+
imageC1C2C2C2C2C2C2C2C2C2C2C2D5C4○D4D10D10D10D102+ 1+42- 1+4D42D5Q8.10D10D48D10
kernelC10.242- 1+4D10.12D4Dic5.5D4C20⋊Q8D208C4D102Q8C4⋊C4⋊D5C23.21D10C207D4Q8×Dic5C20.23D4C5×C22⋊Q8C22⋊Q8C20C22⋊C4C4⋊C4C22×C4C2×Q8C10C10C4C2C2
# reps12211221111124462211444

Matrix representation of C10.242- 1+4 in GL8(𝔽41)

06000000
347000000
350660000
4063510000
00007600
000034000
0000393976
000002340
,
6403610000
134760000
3821100000
3122100000
0000272500
0000251400
00002192725
000026202514
,
740000000
734000000
3821100000
32226400000
000089139
0000267928
0000333349
00001582633
,
5612120000
20240140000
40618350000
23018350000
00002238246
000016403417
0000837171
0000396253
,
001400000
6402350000
00100000
400100000
0000111300
0000193000
000023231113
00000181930

G:=sub<GL(8,GF(41))| [0,34,35,40,0,0,0,0,6,7,0,6,0,0,0,0,0,0,6,35,0,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,7,34,39,0,0,0,0,0,6,0,39,2,0,0,0,0,0,0,7,34,0,0,0,0,0,0,6,0],[6,1,38,31,0,0,0,0,40,34,21,22,0,0,0,0,36,7,1,1,0,0,0,0,1,6,0,0,0,0,0,0,0,0,0,0,27,25,21,26,0,0,0,0,25,14,9,20,0,0,0,0,0,0,27,25,0,0,0,0,0,0,25,14],[7,7,38,32,0,0,0,0,40,34,21,22,0,0,0,0,0,0,1,6,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,8,26,33,15,0,0,0,0,9,7,3,8,0,0,0,0,13,9,34,26,0,0,0,0,9,28,9,33],[5,20,40,23,0,0,0,0,6,24,6,0,0,0,0,0,12,0,18,18,0,0,0,0,12,14,35,35,0,0,0,0,0,0,0,0,22,16,8,39,0,0,0,0,38,40,37,6,0,0,0,0,24,34,17,25,0,0,0,0,6,17,1,3],[0,6,0,40,0,0,0,0,0,40,0,0,0,0,0,0,1,2,1,1,0,0,0,0,40,35,0,0,0,0,0,0,0,0,0,0,11,19,23,0,0,0,0,0,13,30,23,18,0,0,0,0,0,0,11,19,0,0,0,0,0,0,13,30] >;

C10.242- 1+4 in GAP, Magma, Sage, TeX

C_{10}._{24}2_-^{1+4}
% in TeX

G:=Group("C10.24ES-(2,2)");
// GroupNames label

G:=SmallGroup(320,1315);
// by ID

G=gap.SmallGroup(320,1315);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,219,675,570,192,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=c^2=1,d^2=b^2,e^2=a^5*b^2,b*a*b^-1=c*a*c=a^-1,a*d=d*a,a*e=e*a,c*b*c=b^-1,d*b*d^-1=e*b*e^-1=a^5*b,c*d=d*c,e*c*e^-1=a^5*c,e*d*e^-1=b^2*d>;
// generators/relations

׿
×
𝔽