metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C10.802- 1+4, C4⋊C4.104D10, (C2×D4).160D10, (C2×C20).68C23, C22⋊C4.67D10, C4.Dic10⋊28C2, (D4×Dic5).14C2, Dic5⋊3Q8⋊31C2, (C2×C10).194C24, (C22×C4).255D10, C22.D4.2D5, Dic5.41(C4○D4), Dic5.Q8⋊25C2, (D4×C10).132C22, C23.D10⋊28C2, C4⋊Dic5.225C22, (C22×C10).30C23, (C2×Dic5).99C23, C23.199(C22×D5), C22.215(C23×D5), Dic5.14D4⋊29C2, C23.D5.40C22, C22.18(D4⋊2D5), C23.11D10⋊12C2, C23.21D10⋊11C2, (C22×C20).112C22, C5⋊8(C22.46C24), (C4×Dic5).129C22, C23.18D10.2C2, C10.D4.39C22, C2.41(D4.10D10), (C2×Dic10).173C22, (C22×Dic5).127C22, C2.58(D5×C4○D4), C10.170(C2×C4○D4), C2.52(C2×D4⋊2D5), (C2×C10).46(C4○D4), (C2×C10.D4)⋊26C2, (C5×C4⋊C4).174C22, (C2×C4).296(C22×D5), (C5×C22⋊C4).49C22, (C5×C22.D4).2C2, SmallGroup(320,1322)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C10.802- 1+4
G = < a,b,c,d,e | a10=b4=c2=1, d2=e2=a5b2, bab-1=dad-1=a-1, ac=ca, ae=ea, cbc=a5b-1, bd=db, be=eb, cd=dc, ece-1=a5c, ede-1=b2d >
Subgroups: 614 in 214 conjugacy classes, 97 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, Dic5, Dic5, C20, C2×C10, C2×C10, C2×C10, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22⋊Q8, C22.D4, C22.D4, C42.C2, C42⋊2C2, Dic10, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×D4, C22×C10, C22.46C24, C4×Dic5, C10.D4, C4⋊Dic5, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C22×Dic5, C22×C20, D4×C10, C23.11D10, Dic5.14D4, C23.D10, Dic5⋊3Q8, Dic5.Q8, C4.Dic10, C2×C10.D4, C23.21D10, D4×Dic5, C23.18D10, C5×C22.D4, C10.802- 1+4
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2- 1+4, C22×D5, C22.46C24, D4⋊2D5, C23×D5, C2×D4⋊2D5, D5×C4○D4, D4.10D10, C10.802- 1+4
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 112 24 125)(2 111 25 124)(3 120 26 123)(4 119 27 122)(5 118 28 121)(6 117 29 130)(7 116 30 129)(8 115 21 128)(9 114 22 127)(10 113 23 126)(11 64 153 52)(12 63 154 51)(13 62 155 60)(14 61 156 59)(15 70 157 58)(16 69 158 57)(17 68 159 56)(18 67 160 55)(19 66 151 54)(20 65 152 53)(31 94 43 107)(32 93 44 106)(33 92 45 105)(34 91 46 104)(35 100 47 103)(36 99 48 102)(37 98 49 101)(38 97 50 110)(39 96 41 109)(40 95 42 108)(71 134 84 147)(72 133 85 146)(73 132 86 145)(74 131 87 144)(75 140 88 143)(76 139 89 142)(77 138 90 141)(78 137 81 150)(79 136 82 149)(80 135 83 148)
(11 16)(12 17)(13 18)(14 19)(15 20)(31 48)(32 49)(33 50)(34 41)(35 42)(36 43)(37 44)(38 45)(39 46)(40 47)(51 63)(52 64)(53 65)(54 66)(55 67)(56 68)(57 69)(58 70)(59 61)(60 62)(71 76)(72 77)(73 78)(74 79)(75 80)(81 86)(82 87)(83 88)(84 89)(85 90)(111 129)(112 130)(113 121)(114 122)(115 123)(116 124)(117 125)(118 126)(119 127)(120 128)(131 144)(132 145)(133 146)(134 147)(135 148)(136 149)(137 150)(138 141)(139 142)(140 143)(151 156)(152 157)(153 158)(154 159)(155 160)
(1 92 29 110)(2 91 30 109)(3 100 21 108)(4 99 22 107)(5 98 23 106)(6 97 24 105)(7 96 25 104)(8 95 26 103)(9 94 27 102)(10 93 28 101)(11 85 158 77)(12 84 159 76)(13 83 160 75)(14 82 151 74)(15 81 152 73)(16 90 153 72)(17 89 154 71)(18 88 155 80)(19 87 156 79)(20 86 157 78)(31 119 48 127)(32 118 49 126)(33 117 50 125)(34 116 41 124)(35 115 42 123)(36 114 43 122)(37 113 44 121)(38 112 45 130)(39 111 46 129)(40 120 47 128)(51 134 68 142)(52 133 69 141)(53 132 70 150)(54 131 61 149)(55 140 62 148)(56 139 63 147)(57 138 64 146)(58 137 65 145)(59 136 66 144)(60 135 67 143)
(1 81 29 73)(2 82 30 74)(3 83 21 75)(4 84 22 76)(5 85 23 77)(6 86 24 78)(7 87 25 79)(8 88 26 80)(9 89 27 71)(10 90 28 72)(11 101 158 93)(12 102 159 94)(13 103 160 95)(14 104 151 96)(15 105 152 97)(16 106 153 98)(17 107 154 99)(18 108 155 100)(19 109 156 91)(20 110 157 92)(31 51 48 68)(32 52 49 69)(33 53 50 70)(34 54 41 61)(35 55 42 62)(36 56 43 63)(37 57 44 64)(38 58 45 65)(39 59 46 66)(40 60 47 67)(111 149 129 131)(112 150 130 132)(113 141 121 133)(114 142 122 134)(115 143 123 135)(116 144 124 136)(117 145 125 137)(118 146 126 138)(119 147 127 139)(120 148 128 140)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,112,24,125)(2,111,25,124)(3,120,26,123)(4,119,27,122)(5,118,28,121)(6,117,29,130)(7,116,30,129)(8,115,21,128)(9,114,22,127)(10,113,23,126)(11,64,153,52)(12,63,154,51)(13,62,155,60)(14,61,156,59)(15,70,157,58)(16,69,158,57)(17,68,159,56)(18,67,160,55)(19,66,151,54)(20,65,152,53)(31,94,43,107)(32,93,44,106)(33,92,45,105)(34,91,46,104)(35,100,47,103)(36,99,48,102)(37,98,49,101)(38,97,50,110)(39,96,41,109)(40,95,42,108)(71,134,84,147)(72,133,85,146)(73,132,86,145)(74,131,87,144)(75,140,88,143)(76,139,89,142)(77,138,90,141)(78,137,81,150)(79,136,82,149)(80,135,83,148), (11,16)(12,17)(13,18)(14,19)(15,20)(31,48)(32,49)(33,50)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)(57,69)(58,70)(59,61)(60,62)(71,76)(72,77)(73,78)(74,79)(75,80)(81,86)(82,87)(83,88)(84,89)(85,90)(111,129)(112,130)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)(131,144)(132,145)(133,146)(134,147)(135,148)(136,149)(137,150)(138,141)(139,142)(140,143)(151,156)(152,157)(153,158)(154,159)(155,160), (1,92,29,110)(2,91,30,109)(3,100,21,108)(4,99,22,107)(5,98,23,106)(6,97,24,105)(7,96,25,104)(8,95,26,103)(9,94,27,102)(10,93,28,101)(11,85,158,77)(12,84,159,76)(13,83,160,75)(14,82,151,74)(15,81,152,73)(16,90,153,72)(17,89,154,71)(18,88,155,80)(19,87,156,79)(20,86,157,78)(31,119,48,127)(32,118,49,126)(33,117,50,125)(34,116,41,124)(35,115,42,123)(36,114,43,122)(37,113,44,121)(38,112,45,130)(39,111,46,129)(40,120,47,128)(51,134,68,142)(52,133,69,141)(53,132,70,150)(54,131,61,149)(55,140,62,148)(56,139,63,147)(57,138,64,146)(58,137,65,145)(59,136,66,144)(60,135,67,143), (1,81,29,73)(2,82,30,74)(3,83,21,75)(4,84,22,76)(5,85,23,77)(6,86,24,78)(7,87,25,79)(8,88,26,80)(9,89,27,71)(10,90,28,72)(11,101,158,93)(12,102,159,94)(13,103,160,95)(14,104,151,96)(15,105,152,97)(16,106,153,98)(17,107,154,99)(18,108,155,100)(19,109,156,91)(20,110,157,92)(31,51,48,68)(32,52,49,69)(33,53,50,70)(34,54,41,61)(35,55,42,62)(36,56,43,63)(37,57,44,64)(38,58,45,65)(39,59,46,66)(40,60,47,67)(111,149,129,131)(112,150,130,132)(113,141,121,133)(114,142,122,134)(115,143,123,135)(116,144,124,136)(117,145,125,137)(118,146,126,138)(119,147,127,139)(120,148,128,140)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,112,24,125)(2,111,25,124)(3,120,26,123)(4,119,27,122)(5,118,28,121)(6,117,29,130)(7,116,30,129)(8,115,21,128)(9,114,22,127)(10,113,23,126)(11,64,153,52)(12,63,154,51)(13,62,155,60)(14,61,156,59)(15,70,157,58)(16,69,158,57)(17,68,159,56)(18,67,160,55)(19,66,151,54)(20,65,152,53)(31,94,43,107)(32,93,44,106)(33,92,45,105)(34,91,46,104)(35,100,47,103)(36,99,48,102)(37,98,49,101)(38,97,50,110)(39,96,41,109)(40,95,42,108)(71,134,84,147)(72,133,85,146)(73,132,86,145)(74,131,87,144)(75,140,88,143)(76,139,89,142)(77,138,90,141)(78,137,81,150)(79,136,82,149)(80,135,83,148), (11,16)(12,17)(13,18)(14,19)(15,20)(31,48)(32,49)(33,50)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)(57,69)(58,70)(59,61)(60,62)(71,76)(72,77)(73,78)(74,79)(75,80)(81,86)(82,87)(83,88)(84,89)(85,90)(111,129)(112,130)(113,121)(114,122)(115,123)(116,124)(117,125)(118,126)(119,127)(120,128)(131,144)(132,145)(133,146)(134,147)(135,148)(136,149)(137,150)(138,141)(139,142)(140,143)(151,156)(152,157)(153,158)(154,159)(155,160), (1,92,29,110)(2,91,30,109)(3,100,21,108)(4,99,22,107)(5,98,23,106)(6,97,24,105)(7,96,25,104)(8,95,26,103)(9,94,27,102)(10,93,28,101)(11,85,158,77)(12,84,159,76)(13,83,160,75)(14,82,151,74)(15,81,152,73)(16,90,153,72)(17,89,154,71)(18,88,155,80)(19,87,156,79)(20,86,157,78)(31,119,48,127)(32,118,49,126)(33,117,50,125)(34,116,41,124)(35,115,42,123)(36,114,43,122)(37,113,44,121)(38,112,45,130)(39,111,46,129)(40,120,47,128)(51,134,68,142)(52,133,69,141)(53,132,70,150)(54,131,61,149)(55,140,62,148)(56,139,63,147)(57,138,64,146)(58,137,65,145)(59,136,66,144)(60,135,67,143), (1,81,29,73)(2,82,30,74)(3,83,21,75)(4,84,22,76)(5,85,23,77)(6,86,24,78)(7,87,25,79)(8,88,26,80)(9,89,27,71)(10,90,28,72)(11,101,158,93)(12,102,159,94)(13,103,160,95)(14,104,151,96)(15,105,152,97)(16,106,153,98)(17,107,154,99)(18,108,155,100)(19,109,156,91)(20,110,157,92)(31,51,48,68)(32,52,49,69)(33,53,50,70)(34,54,41,61)(35,55,42,62)(36,56,43,63)(37,57,44,64)(38,58,45,65)(39,59,46,66)(40,60,47,67)(111,149,129,131)(112,150,130,132)(113,141,121,133)(114,142,122,134)(115,143,123,135)(116,144,124,136)(117,145,125,137)(118,146,126,138)(119,147,127,139)(120,148,128,140) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,112,24,125),(2,111,25,124),(3,120,26,123),(4,119,27,122),(5,118,28,121),(6,117,29,130),(7,116,30,129),(8,115,21,128),(9,114,22,127),(10,113,23,126),(11,64,153,52),(12,63,154,51),(13,62,155,60),(14,61,156,59),(15,70,157,58),(16,69,158,57),(17,68,159,56),(18,67,160,55),(19,66,151,54),(20,65,152,53),(31,94,43,107),(32,93,44,106),(33,92,45,105),(34,91,46,104),(35,100,47,103),(36,99,48,102),(37,98,49,101),(38,97,50,110),(39,96,41,109),(40,95,42,108),(71,134,84,147),(72,133,85,146),(73,132,86,145),(74,131,87,144),(75,140,88,143),(76,139,89,142),(77,138,90,141),(78,137,81,150),(79,136,82,149),(80,135,83,148)], [(11,16),(12,17),(13,18),(14,19),(15,20),(31,48),(32,49),(33,50),(34,41),(35,42),(36,43),(37,44),(38,45),(39,46),(40,47),(51,63),(52,64),(53,65),(54,66),(55,67),(56,68),(57,69),(58,70),(59,61),(60,62),(71,76),(72,77),(73,78),(74,79),(75,80),(81,86),(82,87),(83,88),(84,89),(85,90),(111,129),(112,130),(113,121),(114,122),(115,123),(116,124),(117,125),(118,126),(119,127),(120,128),(131,144),(132,145),(133,146),(134,147),(135,148),(136,149),(137,150),(138,141),(139,142),(140,143),(151,156),(152,157),(153,158),(154,159),(155,160)], [(1,92,29,110),(2,91,30,109),(3,100,21,108),(4,99,22,107),(5,98,23,106),(6,97,24,105),(7,96,25,104),(8,95,26,103),(9,94,27,102),(10,93,28,101),(11,85,158,77),(12,84,159,76),(13,83,160,75),(14,82,151,74),(15,81,152,73),(16,90,153,72),(17,89,154,71),(18,88,155,80),(19,87,156,79),(20,86,157,78),(31,119,48,127),(32,118,49,126),(33,117,50,125),(34,116,41,124),(35,115,42,123),(36,114,43,122),(37,113,44,121),(38,112,45,130),(39,111,46,129),(40,120,47,128),(51,134,68,142),(52,133,69,141),(53,132,70,150),(54,131,61,149),(55,140,62,148),(56,139,63,147),(57,138,64,146),(58,137,65,145),(59,136,66,144),(60,135,67,143)], [(1,81,29,73),(2,82,30,74),(3,83,21,75),(4,84,22,76),(5,85,23,77),(6,86,24,78),(7,87,25,79),(8,88,26,80),(9,89,27,71),(10,90,28,72),(11,101,158,93),(12,102,159,94),(13,103,160,95),(14,104,151,96),(15,105,152,97),(16,106,153,98),(17,107,154,99),(18,108,155,100),(19,109,156,91),(20,110,157,92),(31,51,48,68),(32,52,49,69),(33,53,50,70),(34,54,41,61),(35,55,42,62),(36,56,43,63),(37,57,44,64),(38,58,45,65),(39,59,46,66),(40,60,47,67),(111,149,129,131),(112,150,130,132),(113,141,121,133),(114,142,122,134),(115,143,123,135),(116,144,124,136),(117,145,125,137),(118,146,126,138),(119,147,127,139),(120,148,128,140)]])
53 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 4O | 4P | 4Q | 4R | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 20A | ··· | 20H | 20I | ··· | 20N |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 2 | 2 | 4 | 4 | 4 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 4 | ··· | 4 | 8 | ··· | 8 |
53 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | C4○D4 | D10 | D10 | D10 | D10 | 2- 1+4 | D4⋊2D5 | D5×C4○D4 | D4.10D10 |
kernel | C10.802- 1+4 | C23.11D10 | Dic5.14D4 | C23.D10 | Dic5⋊3Q8 | Dic5.Q8 | C4.Dic10 | C2×C10.D4 | C23.21D10 | D4×Dic5 | C23.18D10 | C5×C22.D4 | C22.D4 | Dic5 | C2×C10 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | C10 | C22 | C2 | C2 |
# reps | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 6 | 4 | 2 | 2 | 1 | 4 | 4 | 4 |
Matrix representation of C10.802- 1+4 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 35 | 0 | 0 |
0 | 0 | 7 | 34 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 32 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 15 | 3 | 0 | 0 |
0 | 0 | 21 | 26 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 0 | 32 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 40 | 40 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 15 | 3 | 0 | 0 |
0 | 0 | 21 | 26 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 40 | 40 |
0 | 1 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 18 |
0 | 0 | 0 | 0 | 32 | 32 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,7,0,0,0,0,35,34,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,9,0,0,0,0,32,0,0,0,0,0,0,0,15,21,0,0,0,0,3,26,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,40,0,0,0,0,0,40],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,15,21,0,0,0,0,3,26,0,0,0,0,0,0,1,40,0,0,0,0,0,40],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,32,0,0,0,0,18,32] >;
C10.802- 1+4 in GAP, Magma, Sage, TeX
C_{10}._{80}2_-^{1+4}
% in TeX
G:=Group("C10.80ES-(2,2)");
// GroupNames label
G:=SmallGroup(320,1322);
// by ID
G=gap.SmallGroup(320,1322);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,758,100,346,297,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^10=b^4=c^2=1,d^2=e^2=a^5*b^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,a*e=e*a,c*b*c=a^5*b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a^5*c,e*d*e^-1=b^2*d>;
// generators/relations