Copied to
clipboard

G = C10.812- 1+4order 320 = 26·5

36th non-split extension by C10 of 2- 1+4 acting via 2- 1+4/C4○D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C10.812- 1+4, C10.602+ 1+4, C20⋊Q831C2, C4⋊C4.105D10, (C2×D4).97D10, C22⋊C4.26D10, C20.48D414C2, (C2×C20).178C23, (C2×C10).195C24, (C22×C4).256D10, C2.62(D46D10), C22.D4.3D5, Dic5.Q826C2, C20.17D4.10C2, (D4×C10).133C22, C23.D1029C2, C4⋊Dic5.226C22, (C22×C20).86C22, C22.216(C23×D5), C23.128(C22×D5), Dic5.14D430C2, C23.D5.41C22, (C22×C10).220C23, C52(C22.57C24), (C2×Dic10).38C22, (C2×Dic5).100C23, (C4×Dic5).130C22, C10.D4.40C22, C23.18D10.3C2, C2.42(D4.10D10), (C22×Dic5).128C22, (C2×C4).59(C22×D5), (C5×C4⋊C4).175C22, (C5×C22⋊C4).50C22, (C5×C22.D4).3C2, SmallGroup(320,1323)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C10.812- 1+4
C1C5C10C2×C10C2×Dic5C22×Dic5Dic5.14D4 — C10.812- 1+4
C5C2×C10 — C10.812- 1+4
C1C22C22.D4

Generators and relations for C10.812- 1+4
 G = < a,b,c,d,e | a10=b4=1, c2=a5, d2=e2=a5b2, bab-1=cac-1=eae-1=a-1, ad=da, cbc-1=b-1, bd=db, ebe-1=a5b, dcd-1=a5c, ce=ec, ede-1=a5b2d >

Subgroups: 614 in 196 conjugacy classes, 91 normal (27 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C10, C10, C10, C42, C22⋊C4, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, Dic5, C20, C2×C10, C2×C10, C22⋊Q8, C22.D4, C22.D4, C4.4D4, C42.C2, C422C2, C4⋊Q8, Dic10, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C2×C20, C5×D4, C22×C10, C22.57C24, C4×Dic5, C4×Dic5, C10.D4, C4⋊Dic5, C23.D5, C23.D5, C5×C22⋊C4, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×Dic10, C22×Dic5, C22×C20, D4×C10, Dic5.14D4, C23.D10, C20⋊Q8, Dic5.Q8, C20.48D4, C23.18D10, C20.17D4, C5×C22.D4, C10.812- 1+4
Quotients: C1, C2, C22, C23, D5, C24, D10, 2+ 1+4, 2- 1+4, C22×D5, C22.57C24, C23×D5, D46D10, D4.10D10, C10.812- 1+4

Smallest permutation representation of C10.812- 1+4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 150 25 140)(2 149 26 139)(3 148 27 138)(4 147 28 137)(5 146 29 136)(6 145 30 135)(7 144 21 134)(8 143 22 133)(9 142 23 132)(10 141 24 131)(11 39 156 44)(12 38 157 43)(13 37 158 42)(14 36 159 41)(15 35 160 50)(16 34 151 49)(17 33 152 48)(18 32 153 47)(19 31 154 46)(20 40 155 45)(51 99 66 109)(52 98 67 108)(53 97 68 107)(54 96 69 106)(55 95 70 105)(56 94 61 104)(57 93 62 103)(58 92 63 102)(59 91 64 101)(60 100 65 110)(71 124 87 114)(72 123 88 113)(73 122 89 112)(74 121 90 111)(75 130 81 120)(76 129 82 119)(77 128 83 118)(78 127 84 117)(79 126 85 116)(80 125 86 115)
(1 120 6 115)(2 119 7 114)(3 118 8 113)(4 117 9 112)(5 116 10 111)(11 64 16 69)(12 63 17 68)(13 62 18 67)(14 61 19 66)(15 70 20 65)(21 124 26 129)(22 123 27 128)(23 122 28 127)(24 121 29 126)(25 130 30 125)(31 99 36 94)(32 98 37 93)(33 97 38 92)(34 96 39 91)(35 95 40 100)(41 104 46 109)(42 103 47 108)(43 102 48 107)(44 101 49 106)(45 110 50 105)(51 159 56 154)(52 158 57 153)(53 157 58 152)(54 156 59 151)(55 155 60 160)(71 139 76 134)(72 138 77 133)(73 137 78 132)(74 136 79 131)(75 135 80 140)(81 145 86 150)(82 144 87 149)(83 143 88 148)(84 142 89 147)(85 141 90 146)
(1 45 30 35)(2 46 21 36)(3 47 22 37)(4 48 23 38)(5 49 24 39)(6 50 25 40)(7 41 26 31)(8 42 27 32)(9 43 28 33)(10 44 29 34)(11 136 151 141)(12 137 152 142)(13 138 153 143)(14 139 154 144)(15 140 155 145)(16 131 156 146)(17 132 157 147)(18 133 158 148)(19 134 159 149)(20 135 160 150)(51 82 61 71)(52 83 62 72)(53 84 63 73)(54 85 64 74)(55 86 65 75)(56 87 66 76)(57 88 67 77)(58 89 68 78)(59 90 69 79)(60 81 70 80)(91 111 106 126)(92 112 107 127)(93 113 108 128)(94 114 109 129)(95 115 110 130)(96 116 101 121)(97 117 102 122)(98 118 103 123)(99 119 104 124)(100 120 105 125)
(1 155 30 15)(2 154 21 14)(3 153 22 13)(4 152 23 12)(5 151 24 11)(6 160 25 20)(7 159 26 19)(8 158 27 18)(9 157 28 17)(10 156 29 16)(31 149 41 134)(32 148 42 133)(33 147 43 132)(34 146 44 131)(35 145 45 140)(36 144 46 139)(37 143 47 138)(38 142 48 137)(39 141 49 136)(40 150 50 135)(51 124 61 119)(52 123 62 118)(53 122 63 117)(54 121 64 116)(55 130 65 115)(56 129 66 114)(57 128 67 113)(58 127 68 112)(59 126 69 111)(60 125 70 120)(71 99 82 104)(72 98 83 103)(73 97 84 102)(74 96 85 101)(75 95 86 110)(76 94 87 109)(77 93 88 108)(78 92 89 107)(79 91 90 106)(80 100 81 105)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,150,25,140)(2,149,26,139)(3,148,27,138)(4,147,28,137)(5,146,29,136)(6,145,30,135)(7,144,21,134)(8,143,22,133)(9,142,23,132)(10,141,24,131)(11,39,156,44)(12,38,157,43)(13,37,158,42)(14,36,159,41)(15,35,160,50)(16,34,151,49)(17,33,152,48)(18,32,153,47)(19,31,154,46)(20,40,155,45)(51,99,66,109)(52,98,67,108)(53,97,68,107)(54,96,69,106)(55,95,70,105)(56,94,61,104)(57,93,62,103)(58,92,63,102)(59,91,64,101)(60,100,65,110)(71,124,87,114)(72,123,88,113)(73,122,89,112)(74,121,90,111)(75,130,81,120)(76,129,82,119)(77,128,83,118)(78,127,84,117)(79,126,85,116)(80,125,86,115), (1,120,6,115)(2,119,7,114)(3,118,8,113)(4,117,9,112)(5,116,10,111)(11,64,16,69)(12,63,17,68)(13,62,18,67)(14,61,19,66)(15,70,20,65)(21,124,26,129)(22,123,27,128)(23,122,28,127)(24,121,29,126)(25,130,30,125)(31,99,36,94)(32,98,37,93)(33,97,38,92)(34,96,39,91)(35,95,40,100)(41,104,46,109)(42,103,47,108)(43,102,48,107)(44,101,49,106)(45,110,50,105)(51,159,56,154)(52,158,57,153)(53,157,58,152)(54,156,59,151)(55,155,60,160)(71,139,76,134)(72,138,77,133)(73,137,78,132)(74,136,79,131)(75,135,80,140)(81,145,86,150)(82,144,87,149)(83,143,88,148)(84,142,89,147)(85,141,90,146), (1,45,30,35)(2,46,21,36)(3,47,22,37)(4,48,23,38)(5,49,24,39)(6,50,25,40)(7,41,26,31)(8,42,27,32)(9,43,28,33)(10,44,29,34)(11,136,151,141)(12,137,152,142)(13,138,153,143)(14,139,154,144)(15,140,155,145)(16,131,156,146)(17,132,157,147)(18,133,158,148)(19,134,159,149)(20,135,160,150)(51,82,61,71)(52,83,62,72)(53,84,63,73)(54,85,64,74)(55,86,65,75)(56,87,66,76)(57,88,67,77)(58,89,68,78)(59,90,69,79)(60,81,70,80)(91,111,106,126)(92,112,107,127)(93,113,108,128)(94,114,109,129)(95,115,110,130)(96,116,101,121)(97,117,102,122)(98,118,103,123)(99,119,104,124)(100,120,105,125), (1,155,30,15)(2,154,21,14)(3,153,22,13)(4,152,23,12)(5,151,24,11)(6,160,25,20)(7,159,26,19)(8,158,27,18)(9,157,28,17)(10,156,29,16)(31,149,41,134)(32,148,42,133)(33,147,43,132)(34,146,44,131)(35,145,45,140)(36,144,46,139)(37,143,47,138)(38,142,48,137)(39,141,49,136)(40,150,50,135)(51,124,61,119)(52,123,62,118)(53,122,63,117)(54,121,64,116)(55,130,65,115)(56,129,66,114)(57,128,67,113)(58,127,68,112)(59,126,69,111)(60,125,70,120)(71,99,82,104)(72,98,83,103)(73,97,84,102)(74,96,85,101)(75,95,86,110)(76,94,87,109)(77,93,88,108)(78,92,89,107)(79,91,90,106)(80,100,81,105)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,150,25,140)(2,149,26,139)(3,148,27,138)(4,147,28,137)(5,146,29,136)(6,145,30,135)(7,144,21,134)(8,143,22,133)(9,142,23,132)(10,141,24,131)(11,39,156,44)(12,38,157,43)(13,37,158,42)(14,36,159,41)(15,35,160,50)(16,34,151,49)(17,33,152,48)(18,32,153,47)(19,31,154,46)(20,40,155,45)(51,99,66,109)(52,98,67,108)(53,97,68,107)(54,96,69,106)(55,95,70,105)(56,94,61,104)(57,93,62,103)(58,92,63,102)(59,91,64,101)(60,100,65,110)(71,124,87,114)(72,123,88,113)(73,122,89,112)(74,121,90,111)(75,130,81,120)(76,129,82,119)(77,128,83,118)(78,127,84,117)(79,126,85,116)(80,125,86,115), (1,120,6,115)(2,119,7,114)(3,118,8,113)(4,117,9,112)(5,116,10,111)(11,64,16,69)(12,63,17,68)(13,62,18,67)(14,61,19,66)(15,70,20,65)(21,124,26,129)(22,123,27,128)(23,122,28,127)(24,121,29,126)(25,130,30,125)(31,99,36,94)(32,98,37,93)(33,97,38,92)(34,96,39,91)(35,95,40,100)(41,104,46,109)(42,103,47,108)(43,102,48,107)(44,101,49,106)(45,110,50,105)(51,159,56,154)(52,158,57,153)(53,157,58,152)(54,156,59,151)(55,155,60,160)(71,139,76,134)(72,138,77,133)(73,137,78,132)(74,136,79,131)(75,135,80,140)(81,145,86,150)(82,144,87,149)(83,143,88,148)(84,142,89,147)(85,141,90,146), (1,45,30,35)(2,46,21,36)(3,47,22,37)(4,48,23,38)(5,49,24,39)(6,50,25,40)(7,41,26,31)(8,42,27,32)(9,43,28,33)(10,44,29,34)(11,136,151,141)(12,137,152,142)(13,138,153,143)(14,139,154,144)(15,140,155,145)(16,131,156,146)(17,132,157,147)(18,133,158,148)(19,134,159,149)(20,135,160,150)(51,82,61,71)(52,83,62,72)(53,84,63,73)(54,85,64,74)(55,86,65,75)(56,87,66,76)(57,88,67,77)(58,89,68,78)(59,90,69,79)(60,81,70,80)(91,111,106,126)(92,112,107,127)(93,113,108,128)(94,114,109,129)(95,115,110,130)(96,116,101,121)(97,117,102,122)(98,118,103,123)(99,119,104,124)(100,120,105,125), (1,155,30,15)(2,154,21,14)(3,153,22,13)(4,152,23,12)(5,151,24,11)(6,160,25,20)(7,159,26,19)(8,158,27,18)(9,157,28,17)(10,156,29,16)(31,149,41,134)(32,148,42,133)(33,147,43,132)(34,146,44,131)(35,145,45,140)(36,144,46,139)(37,143,47,138)(38,142,48,137)(39,141,49,136)(40,150,50,135)(51,124,61,119)(52,123,62,118)(53,122,63,117)(54,121,64,116)(55,130,65,115)(56,129,66,114)(57,128,67,113)(58,127,68,112)(59,126,69,111)(60,125,70,120)(71,99,82,104)(72,98,83,103)(73,97,84,102)(74,96,85,101)(75,95,86,110)(76,94,87,109)(77,93,88,108)(78,92,89,107)(79,91,90,106)(80,100,81,105) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,150,25,140),(2,149,26,139),(3,148,27,138),(4,147,28,137),(5,146,29,136),(6,145,30,135),(7,144,21,134),(8,143,22,133),(9,142,23,132),(10,141,24,131),(11,39,156,44),(12,38,157,43),(13,37,158,42),(14,36,159,41),(15,35,160,50),(16,34,151,49),(17,33,152,48),(18,32,153,47),(19,31,154,46),(20,40,155,45),(51,99,66,109),(52,98,67,108),(53,97,68,107),(54,96,69,106),(55,95,70,105),(56,94,61,104),(57,93,62,103),(58,92,63,102),(59,91,64,101),(60,100,65,110),(71,124,87,114),(72,123,88,113),(73,122,89,112),(74,121,90,111),(75,130,81,120),(76,129,82,119),(77,128,83,118),(78,127,84,117),(79,126,85,116),(80,125,86,115)], [(1,120,6,115),(2,119,7,114),(3,118,8,113),(4,117,9,112),(5,116,10,111),(11,64,16,69),(12,63,17,68),(13,62,18,67),(14,61,19,66),(15,70,20,65),(21,124,26,129),(22,123,27,128),(23,122,28,127),(24,121,29,126),(25,130,30,125),(31,99,36,94),(32,98,37,93),(33,97,38,92),(34,96,39,91),(35,95,40,100),(41,104,46,109),(42,103,47,108),(43,102,48,107),(44,101,49,106),(45,110,50,105),(51,159,56,154),(52,158,57,153),(53,157,58,152),(54,156,59,151),(55,155,60,160),(71,139,76,134),(72,138,77,133),(73,137,78,132),(74,136,79,131),(75,135,80,140),(81,145,86,150),(82,144,87,149),(83,143,88,148),(84,142,89,147),(85,141,90,146)], [(1,45,30,35),(2,46,21,36),(3,47,22,37),(4,48,23,38),(5,49,24,39),(6,50,25,40),(7,41,26,31),(8,42,27,32),(9,43,28,33),(10,44,29,34),(11,136,151,141),(12,137,152,142),(13,138,153,143),(14,139,154,144),(15,140,155,145),(16,131,156,146),(17,132,157,147),(18,133,158,148),(19,134,159,149),(20,135,160,150),(51,82,61,71),(52,83,62,72),(53,84,63,73),(54,85,64,74),(55,86,65,75),(56,87,66,76),(57,88,67,77),(58,89,68,78),(59,90,69,79),(60,81,70,80),(91,111,106,126),(92,112,107,127),(93,113,108,128),(94,114,109,129),(95,115,110,130),(96,116,101,121),(97,117,102,122),(98,118,103,123),(99,119,104,124),(100,120,105,125)], [(1,155,30,15),(2,154,21,14),(3,153,22,13),(4,152,23,12),(5,151,24,11),(6,160,25,20),(7,159,26,19),(8,158,27,18),(9,157,28,17),(10,156,29,16),(31,149,41,134),(32,148,42,133),(33,147,43,132),(34,146,44,131),(35,145,45,140),(36,144,46,139),(37,143,47,138),(38,142,48,137),(39,141,49,136),(40,150,50,135),(51,124,61,119),(52,123,62,118),(53,122,63,117),(54,121,64,116),(55,130,65,115),(56,129,66,114),(57,128,67,113),(58,127,68,112),(59,126,69,111),(60,125,70,120),(71,99,82,104),(72,98,83,103),(73,97,84,102),(74,96,85,101),(75,95,86,110),(76,94,87,109),(77,93,88,108),(78,92,89,107),(79,91,90,106),(80,100,81,105)]])

47 conjugacy classes

class 1 2A2B2C2D2E4A···4E4F···4M5A5B10A···10F10G10H10I10J10K10L20A···20H20I···20N
order1222224···44···45510···1010101010101020···2020···20
size1111444···420···20222···24444884···48···8

47 irreducible representations

dim111111111222224444
type+++++++++++++++--
imageC1C2C2C2C2C2C2C2C2D5D10D10D10D102+ 1+42- 1+4D46D10D4.10D10
kernelC10.812- 1+4Dic5.14D4C23.D10C20⋊Q8Dic5.Q8C20.48D4C23.18D10C20.17D4C5×C22.D4C22.D4C22⋊C4C4⋊C4C22×C4C2×D4C10C10C2C2
# reps124222111264221248

Matrix representation of C10.812- 1+4 in GL8(𝔽41)

3535000000
640000000
000350000
007340000
000040000
000004000
000000400
000000040
,
3927000000
152000000
0028390000
003130000
00001501537
00001502626
000015392839
00000132839
,
27393330000
37143950000
312523140000
37359180000
0000151500
0000152600
0000028213
000015282839
,
4003200000
0401200000
401100000
396010000
000040200
00000100
000040101
000040110
,
2142180000
26396120000
0028390000
003130000
00001503715
00001502626
000015283928
0000023928

G:=sub<GL(8,GF(41))| [35,6,0,0,0,0,0,0,35,40,0,0,0,0,0,0,0,0,0,7,0,0,0,0,0,0,35,34,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[39,15,0,0,0,0,0,0,27,2,0,0,0,0,0,0,0,0,28,3,0,0,0,0,0,0,39,13,0,0,0,0,0,0,0,0,15,15,15,0,0,0,0,0,0,0,39,13,0,0,0,0,15,26,28,28,0,0,0,0,37,26,39,39],[27,37,31,37,0,0,0,0,39,14,25,35,0,0,0,0,3,39,23,9,0,0,0,0,33,5,14,18,0,0,0,0,0,0,0,0,15,15,0,15,0,0,0,0,15,26,28,28,0,0,0,0,0,0,2,28,0,0,0,0,0,0,13,39],[40,0,40,39,0,0,0,0,0,40,1,6,0,0,0,0,3,1,1,0,0,0,0,0,20,20,0,1,0,0,0,0,0,0,0,0,40,0,40,40,0,0,0,0,2,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[2,26,0,0,0,0,0,0,14,39,0,0,0,0,0,0,21,6,28,3,0,0,0,0,8,12,39,13,0,0,0,0,0,0,0,0,15,15,15,0,0,0,0,0,0,0,28,2,0,0,0,0,37,26,39,39,0,0,0,0,15,26,28,28] >;

C10.812- 1+4 in GAP, Magma, Sage, TeX

C_{10}._{81}2_-^{1+4}
% in TeX

G:=Group("C10.81ES-(2,2)");
// GroupNames label

G:=SmallGroup(320,1323);
// by ID

G=gap.SmallGroup(320,1323);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,758,219,184,1571,570,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^10=b^4=1,c^2=a^5,d^2=e^2=a^5*b^2,b*a*b^-1=c*a*c^-1=e*a*e^-1=a^-1,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,e*b*e^-1=a^5*b,d*c*d^-1=a^5*c,c*e=e*c,e*d*e^-1=a^5*b^2*d>;
// generators/relations

׿
×
𝔽