Copied to
clipboard

G = C2xC4xD20order 320 = 26·5

Direct product of C2xC4 and D20

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xC4xD20, C42:38D10, C10:2(C4xD4), (C2xC20):32D4, C20:11(C2xD4), (C2xC42):7D5, C20:8(C22xC4), (C4xC20):53C22, D10:2(C22xC4), C2.1(C22xD20), C10.2(C22xD4), C10.25(C23xC4), (C2xC10).17C24, C4:Dic5:81C22, C22.63(C2xD20), (C2xC20).875C23, (C22xD20).21C2, (C22xC4).468D10, D10:C4:75C22, C22.14(C23xD5), (C2xD20).292C22, C22.68(C4oD20), C23.314(C22xD5), (C22xC10).379C23, (C22xC20).503C22, (C2xDic5).183C23, (C22xD5).156C23, (C23xD5).104C22, (C22xDic5).224C22, C5:2(C2xC4xD4), C4:3(C2xC4xD5), (C2xC4xC20):11C2, (C2xC4):12(C4xD5), (C2xC20):42(C2xC4), C2.6(D5xC22xC4), C2.3(C2xC4oD20), C10.5(C2xC4oD4), (D5xC22xC4):14C2, (C2xC4xD5):62C22, C22.69(C2xC4xD5), (C2xC4:Dic5):49C2, (C2xC10).169(C2xD4), (C22xD5):14(C2xC4), (C2xD10:C4):45C2, (C2xC10).96(C4oD4), (C2xC4).817(C22xD5), (C2xC10).248(C22xC4), SmallGroup(320,1145)

Series: Derived Chief Lower central Upper central

C1C10 — C2xC4xD20
C1C5C10C2xC10C22xD5C23xD5C22xD20 — C2xC4xD20
C5C10 — C2xC4xD20
C1C22xC4C2xC42

Generators and relations for C2xC4xD20
 G = < a,b,c,d | a2=b4=c20=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 1518 in 426 conjugacy classes, 183 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2xC4, C2xC4, D4, C23, C23, D5, C10, C10, C42, C22:C4, C4:C4, C22xC4, C22xC4, C2xD4, C24, Dic5, C20, C20, D10, D10, C2xC10, C2xC10, C2xC42, C2xC22:C4, C2xC4:C4, C4xD4, C23xC4, C22xD4, C4xD5, D20, C2xDic5, C2xDic5, C2xC20, C2xC20, C22xD5, C22xD5, C22xC10, C2xC4xD4, C4:Dic5, D10:C4, C4xC20, C2xC4xD5, C2xC4xD5, C2xD20, C22xDic5, C22xC20, C23xD5, C4xD20, C2xC4:Dic5, C2xD10:C4, C2xC4xC20, D5xC22xC4, C22xD20, C2xC4xD20
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, D5, C22xC4, C2xD4, C4oD4, C24, D10, C4xD4, C23xC4, C22xD4, C2xC4oD4, C4xD5, D20, C22xD5, C2xC4xD4, C2xC4xD5, C2xD20, C4oD20, C23xD5, C4xD20, D5xC22xC4, C22xD20, C2xC4oD20, C2xC4xD20

Smallest permutation representation of C2xC4xD20
On 160 points
Generators in S160
(1 116)(2 117)(3 118)(4 119)(5 120)(6 101)(7 102)(8 103)(9 104)(10 105)(11 106)(12 107)(13 108)(14 109)(15 110)(16 111)(17 112)(18 113)(19 114)(20 115)(21 70)(22 71)(23 72)(24 73)(25 74)(26 75)(27 76)(28 77)(29 78)(30 79)(31 80)(32 61)(33 62)(34 63)(35 64)(36 65)(37 66)(38 67)(39 68)(40 69)(41 142)(42 143)(43 144)(44 145)(45 146)(46 147)(47 148)(48 149)(49 150)(50 151)(51 152)(52 153)(53 154)(54 155)(55 156)(56 157)(57 158)(58 159)(59 160)(60 141)(81 133)(82 134)(83 135)(84 136)(85 137)(86 138)(87 139)(88 140)(89 121)(90 122)(91 123)(92 124)(93 125)(94 126)(95 127)(96 128)(97 129)(98 130)(99 131)(100 132)
(1 32 50 87)(2 33 51 88)(3 34 52 89)(4 35 53 90)(5 36 54 91)(6 37 55 92)(7 38 56 93)(8 39 57 94)(9 40 58 95)(10 21 59 96)(11 22 60 97)(12 23 41 98)(13 24 42 99)(14 25 43 100)(15 26 44 81)(16 27 45 82)(17 28 46 83)(18 29 47 84)(19 30 48 85)(20 31 49 86)(61 151 139 116)(62 152 140 117)(63 153 121 118)(64 154 122 119)(65 155 123 120)(66 156 124 101)(67 157 125 102)(68 158 126 103)(69 159 127 104)(70 160 128 105)(71 141 129 106)(72 142 130 107)(73 143 131 108)(74 144 132 109)(75 145 133 110)(76 146 134 111)(77 147 135 112)(78 148 136 113)(79 149 137 114)(80 150 138 115)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 105)(2 104)(3 103)(4 102)(5 101)(6 120)(7 119)(8 118)(9 117)(10 116)(11 115)(12 114)(13 113)(14 112)(15 111)(16 110)(17 109)(18 108)(19 107)(20 106)(21 61)(22 80)(23 79)(24 78)(25 77)(26 76)(27 75)(28 74)(29 73)(30 72)(31 71)(32 70)(33 69)(34 68)(35 67)(36 66)(37 65)(38 64)(39 63)(40 62)(41 149)(42 148)(43 147)(44 146)(45 145)(46 144)(47 143)(48 142)(49 141)(50 160)(51 159)(52 158)(53 157)(54 156)(55 155)(56 154)(57 153)(58 152)(59 151)(60 150)(81 134)(82 133)(83 132)(84 131)(85 130)(86 129)(87 128)(88 127)(89 126)(90 125)(91 124)(92 123)(93 122)(94 121)(95 140)(96 139)(97 138)(98 137)(99 136)(100 135)

G:=sub<Sym(160)| (1,116)(2,117)(3,118)(4,119)(5,120)(6,101)(7,102)(8,103)(9,104)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,112)(18,113)(19,114)(20,115)(21,70)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,80)(32,61)(33,62)(34,63)(35,64)(36,65)(37,66)(38,67)(39,68)(40,69)(41,142)(42,143)(43,144)(44,145)(45,146)(46,147)(47,148)(48,149)(49,150)(50,151)(51,152)(52,153)(53,154)(54,155)(55,156)(56,157)(57,158)(58,159)(59,160)(60,141)(81,133)(82,134)(83,135)(84,136)(85,137)(86,138)(87,139)(88,140)(89,121)(90,122)(91,123)(92,124)(93,125)(94,126)(95,127)(96,128)(97,129)(98,130)(99,131)(100,132), (1,32,50,87)(2,33,51,88)(3,34,52,89)(4,35,53,90)(5,36,54,91)(6,37,55,92)(7,38,56,93)(8,39,57,94)(9,40,58,95)(10,21,59,96)(11,22,60,97)(12,23,41,98)(13,24,42,99)(14,25,43,100)(15,26,44,81)(16,27,45,82)(17,28,46,83)(18,29,47,84)(19,30,48,85)(20,31,49,86)(61,151,139,116)(62,152,140,117)(63,153,121,118)(64,154,122,119)(65,155,123,120)(66,156,124,101)(67,157,125,102)(68,158,126,103)(69,159,127,104)(70,160,128,105)(71,141,129,106)(72,142,130,107)(73,143,131,108)(74,144,132,109)(75,145,133,110)(76,146,134,111)(77,147,135,112)(78,148,136,113)(79,149,137,114)(80,150,138,115), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,105)(2,104)(3,103)(4,102)(5,101)(6,120)(7,119)(8,118)(9,117)(10,116)(11,115)(12,114)(13,113)(14,112)(15,111)(16,110)(17,109)(18,108)(19,107)(20,106)(21,61)(22,80)(23,79)(24,78)(25,77)(26,76)(27,75)(28,74)(29,73)(30,72)(31,71)(32,70)(33,69)(34,68)(35,67)(36,66)(37,65)(38,64)(39,63)(40,62)(41,149)(42,148)(43,147)(44,146)(45,145)(46,144)(47,143)(48,142)(49,141)(50,160)(51,159)(52,158)(53,157)(54,156)(55,155)(56,154)(57,153)(58,152)(59,151)(60,150)(81,134)(82,133)(83,132)(84,131)(85,130)(86,129)(87,128)(88,127)(89,126)(90,125)(91,124)(92,123)(93,122)(94,121)(95,140)(96,139)(97,138)(98,137)(99,136)(100,135)>;

G:=Group( (1,116)(2,117)(3,118)(4,119)(5,120)(6,101)(7,102)(8,103)(9,104)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,112)(18,113)(19,114)(20,115)(21,70)(22,71)(23,72)(24,73)(25,74)(26,75)(27,76)(28,77)(29,78)(30,79)(31,80)(32,61)(33,62)(34,63)(35,64)(36,65)(37,66)(38,67)(39,68)(40,69)(41,142)(42,143)(43,144)(44,145)(45,146)(46,147)(47,148)(48,149)(49,150)(50,151)(51,152)(52,153)(53,154)(54,155)(55,156)(56,157)(57,158)(58,159)(59,160)(60,141)(81,133)(82,134)(83,135)(84,136)(85,137)(86,138)(87,139)(88,140)(89,121)(90,122)(91,123)(92,124)(93,125)(94,126)(95,127)(96,128)(97,129)(98,130)(99,131)(100,132), (1,32,50,87)(2,33,51,88)(3,34,52,89)(4,35,53,90)(5,36,54,91)(6,37,55,92)(7,38,56,93)(8,39,57,94)(9,40,58,95)(10,21,59,96)(11,22,60,97)(12,23,41,98)(13,24,42,99)(14,25,43,100)(15,26,44,81)(16,27,45,82)(17,28,46,83)(18,29,47,84)(19,30,48,85)(20,31,49,86)(61,151,139,116)(62,152,140,117)(63,153,121,118)(64,154,122,119)(65,155,123,120)(66,156,124,101)(67,157,125,102)(68,158,126,103)(69,159,127,104)(70,160,128,105)(71,141,129,106)(72,142,130,107)(73,143,131,108)(74,144,132,109)(75,145,133,110)(76,146,134,111)(77,147,135,112)(78,148,136,113)(79,149,137,114)(80,150,138,115), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,105)(2,104)(3,103)(4,102)(5,101)(6,120)(7,119)(8,118)(9,117)(10,116)(11,115)(12,114)(13,113)(14,112)(15,111)(16,110)(17,109)(18,108)(19,107)(20,106)(21,61)(22,80)(23,79)(24,78)(25,77)(26,76)(27,75)(28,74)(29,73)(30,72)(31,71)(32,70)(33,69)(34,68)(35,67)(36,66)(37,65)(38,64)(39,63)(40,62)(41,149)(42,148)(43,147)(44,146)(45,145)(46,144)(47,143)(48,142)(49,141)(50,160)(51,159)(52,158)(53,157)(54,156)(55,155)(56,154)(57,153)(58,152)(59,151)(60,150)(81,134)(82,133)(83,132)(84,131)(85,130)(86,129)(87,128)(88,127)(89,126)(90,125)(91,124)(92,123)(93,122)(94,121)(95,140)(96,139)(97,138)(98,137)(99,136)(100,135) );

G=PermutationGroup([[(1,116),(2,117),(3,118),(4,119),(5,120),(6,101),(7,102),(8,103),(9,104),(10,105),(11,106),(12,107),(13,108),(14,109),(15,110),(16,111),(17,112),(18,113),(19,114),(20,115),(21,70),(22,71),(23,72),(24,73),(25,74),(26,75),(27,76),(28,77),(29,78),(30,79),(31,80),(32,61),(33,62),(34,63),(35,64),(36,65),(37,66),(38,67),(39,68),(40,69),(41,142),(42,143),(43,144),(44,145),(45,146),(46,147),(47,148),(48,149),(49,150),(50,151),(51,152),(52,153),(53,154),(54,155),(55,156),(56,157),(57,158),(58,159),(59,160),(60,141),(81,133),(82,134),(83,135),(84,136),(85,137),(86,138),(87,139),(88,140),(89,121),(90,122),(91,123),(92,124),(93,125),(94,126),(95,127),(96,128),(97,129),(98,130),(99,131),(100,132)], [(1,32,50,87),(2,33,51,88),(3,34,52,89),(4,35,53,90),(5,36,54,91),(6,37,55,92),(7,38,56,93),(8,39,57,94),(9,40,58,95),(10,21,59,96),(11,22,60,97),(12,23,41,98),(13,24,42,99),(14,25,43,100),(15,26,44,81),(16,27,45,82),(17,28,46,83),(18,29,47,84),(19,30,48,85),(20,31,49,86),(61,151,139,116),(62,152,140,117),(63,153,121,118),(64,154,122,119),(65,155,123,120),(66,156,124,101),(67,157,125,102),(68,158,126,103),(69,159,127,104),(70,160,128,105),(71,141,129,106),(72,142,130,107),(73,143,131,108),(74,144,132,109),(75,145,133,110),(76,146,134,111),(77,147,135,112),(78,148,136,113),(79,149,137,114),(80,150,138,115)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,105),(2,104),(3,103),(4,102),(5,101),(6,120),(7,119),(8,118),(9,117),(10,116),(11,115),(12,114),(13,113),(14,112),(15,111),(16,110),(17,109),(18,108),(19,107),(20,106),(21,61),(22,80),(23,79),(24,78),(25,77),(26,76),(27,75),(28,74),(29,73),(30,72),(31,71),(32,70),(33,69),(34,68),(35,67),(36,66),(37,65),(38,64),(39,63),(40,62),(41,149),(42,148),(43,147),(44,146),(45,145),(46,144),(47,143),(48,142),(49,141),(50,160),(51,159),(52,158),(53,157),(54,156),(55,155),(56,154),(57,153),(58,152),(59,151),(60,150),(81,134),(82,133),(83,132),(84,131),(85,130),(86,129),(87,128),(88,127),(89,126),(90,125),(91,124),(92,123),(93,122),(94,121),(95,140),(96,139),(97,138),(98,137),(99,136),(100,135)]])

104 conjugacy classes

class 1 2A···2G2H···2O4A···4H4I···4P4Q···4X5A5B10A···10N20A···20AV
order12···22···24···44···44···45510···1020···20
size11···110···101···12···210···10222···22···2

104 irreducible representations

dim1111111122222222
type++++++++++++
imageC1C2C2C2C2C2C2C4D4D5C4oD4D10D10C4xD5D20C4oD20
kernelC2xC4xD20C4xD20C2xC4:Dic5C2xD10:C4C2xC4xC20D5xC22xC4C22xD20C2xD20C2xC20C2xC42C2xC10C42C22xC4C2xC4C2xC4C22
# reps18121211642486161616

Matrix representation of C2xC4xD20 in GL6(F41)

4000000
0400000
0040000
0004000
0000400
0000040
,
900000
090000
001000
000100
0000400
0000040
,
4010000
5350000
0014000
0036600
0000911
00003014
,
100000
36400000
0040000
005100
0000911
00003032

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,5,0,0,0,0,1,35,0,0,0,0,0,0,1,36,0,0,0,0,40,6,0,0,0,0,0,0,9,30,0,0,0,0,11,14],[1,36,0,0,0,0,0,40,0,0,0,0,0,0,40,5,0,0,0,0,0,1,0,0,0,0,0,0,9,30,0,0,0,0,11,32] >;

C2xC4xD20 in GAP, Magma, Sage, TeX

C_2\times C_4\times D_{20}
% in TeX

G:=Group("C2xC4xD20");
// GroupNames label

G:=SmallGroup(320,1145);
// by ID

G=gap.SmallGroup(320,1145);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,184,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^20=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<