Copied to
clipboard

G = C4×C4○D20order 320 = 26·5

Direct product of C4 and C4○D20

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4×C4○D20, C42.275D10, (C2×C42)⋊8D5, (C4×D20)⋊53C2, D2035(C2×C4), C2012(C4○D4), (D5×C42)⋊15C2, (C4×Dic10)⋊55C2, Dic1033(C2×C4), C42⋊D538C2, C10.26(C23×C4), (C2×C10).18C24, (C2×C20).876C23, (C4×C20).333C22, C20.177(C22×C4), D10.10(C22×C4), (C22×C4).437D10, C22.15(C23×D5), (C2×D20).293C22, C4⋊Dic5.395C22, Dic5.10(C22×C4), C23.217(C22×D5), C23.21D1040C2, (C22×C20).564C22, (C22×C10).380C23, (C2×Dic5).184C23, (C4×Dic5).330C22, (C22×D5).157C23, C23.D5.139C22, D10⋊C4.162C22, (C2×Dic10).322C22, C10.D4.174C22, C52(C4×C4○D4), (C2×C4×C20)⋊12C2, (C2×C4)⋊13(C4×D5), C4.117(C2×C4×D5), (C2×C20)⋊43(C2×C4), (C4×D5)⋊13(C2×C4), (C4×C5⋊D4)⋊62C2, C5⋊D412(C2×C4), C22.9(C2×C4×D5), C2.7(D5×C22×C4), C10.6(C2×C4○D4), C2.4(C2×C4○D20), (C2×C4○D20).28C2, (C2×C4×D5).370C22, (C2×C4).818(C22×D5), (C2×C10).249(C22×C4), (C2×C5⋊D4).157C22, SmallGroup(320,1146)

Series: Derived Chief Lower central Upper central

C1C10 — C4×C4○D20
C1C5C10C2×C10C22×D5C2×C4×D5C2×C4○D20 — C4×C4○D20
C5C10 — C4×C4○D20
C1C42C2×C42

Generators and relations for C4×C4○D20
 G = < a,b,c,d | a4=b4=d2=1, c10=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c9 >

Subgroups: 894 in 310 conjugacy classes, 159 normal (25 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C10, C42, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2×C10, C2×C42, C2×C42, C42⋊C2, C4×D4, C4×Q8, C2×C4○D4, Dic10, C4×D5, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C22×D5, C22×C10, C4×C4○D4, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C4×C20, C4×C20, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C2×C5⋊D4, C22×C20, C22×C20, C4×Dic10, D5×C42, C42⋊D5, C4×D20, C23.21D10, C4×C5⋊D4, C2×C4×C20, C2×C4○D20, C4×C4○D20
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, C22×C4, C4○D4, C24, D10, C23×C4, C2×C4○D4, C4×D5, C22×D5, C4×C4○D4, C2×C4×D5, C4○D20, C23×D5, D5×C22×C4, C2×C4○D20, C4×C4○D20

Smallest permutation representation of C4×C4○D20
On 160 points
Generators in S160
(1 52 71 136)(2 53 72 137)(3 54 73 138)(4 55 74 139)(5 56 75 140)(6 57 76 121)(7 58 77 122)(8 59 78 123)(9 60 79 124)(10 41 80 125)(11 42 61 126)(12 43 62 127)(13 44 63 128)(14 45 64 129)(15 46 65 130)(16 47 66 131)(17 48 67 132)(18 49 68 133)(19 50 69 134)(20 51 70 135)(21 85 110 151)(22 86 111 152)(23 87 112 153)(24 88 113 154)(25 89 114 155)(26 90 115 156)(27 91 116 157)(28 92 117 158)(29 93 118 159)(30 94 119 160)(31 95 120 141)(32 96 101 142)(33 97 102 143)(34 98 103 144)(35 99 104 145)(36 100 105 146)(37 81 106 147)(38 82 107 148)(39 83 108 149)(40 84 109 150)
(1 149 11 159)(2 150 12 160)(3 151 13 141)(4 152 14 142)(5 153 15 143)(6 154 16 144)(7 155 17 145)(8 156 18 146)(9 157 19 147)(10 158 20 148)(21 44 31 54)(22 45 32 55)(23 46 33 56)(24 47 34 57)(25 48 35 58)(26 49 36 59)(27 50 37 60)(28 51 38 41)(29 52 39 42)(30 53 40 43)(61 93 71 83)(62 94 72 84)(63 95 73 85)(64 96 74 86)(65 97 75 87)(66 98 76 88)(67 99 77 89)(68 100 78 90)(69 81 79 91)(70 82 80 92)(101 139 111 129)(102 140 112 130)(103 121 113 131)(104 122 114 132)(105 123 115 133)(106 124 116 134)(107 125 117 135)(108 126 118 136)(109 127 119 137)(110 128 120 138)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 31)(22 30)(23 29)(24 28)(25 27)(32 40)(33 39)(34 38)(35 37)(41 57)(42 56)(43 55)(44 54)(45 53)(46 52)(47 51)(48 50)(58 60)(61 75)(62 74)(63 73)(64 72)(65 71)(66 70)(67 69)(76 80)(77 79)(81 99)(82 98)(83 97)(84 96)(85 95)(86 94)(87 93)(88 92)(89 91)(101 109)(102 108)(103 107)(104 106)(110 120)(111 119)(112 118)(113 117)(114 116)(121 125)(122 124)(126 140)(127 139)(128 138)(129 137)(130 136)(131 135)(132 134)(141 151)(142 150)(143 149)(144 148)(145 147)(152 160)(153 159)(154 158)(155 157)

G:=sub<Sym(160)| (1,52,71,136)(2,53,72,137)(3,54,73,138)(4,55,74,139)(5,56,75,140)(6,57,76,121)(7,58,77,122)(8,59,78,123)(9,60,79,124)(10,41,80,125)(11,42,61,126)(12,43,62,127)(13,44,63,128)(14,45,64,129)(15,46,65,130)(16,47,66,131)(17,48,67,132)(18,49,68,133)(19,50,69,134)(20,51,70,135)(21,85,110,151)(22,86,111,152)(23,87,112,153)(24,88,113,154)(25,89,114,155)(26,90,115,156)(27,91,116,157)(28,92,117,158)(29,93,118,159)(30,94,119,160)(31,95,120,141)(32,96,101,142)(33,97,102,143)(34,98,103,144)(35,99,104,145)(36,100,105,146)(37,81,106,147)(38,82,107,148)(39,83,108,149)(40,84,109,150), (1,149,11,159)(2,150,12,160)(3,151,13,141)(4,152,14,142)(5,153,15,143)(6,154,16,144)(7,155,17,145)(8,156,18,146)(9,157,19,147)(10,158,20,148)(21,44,31,54)(22,45,32,55)(23,46,33,56)(24,47,34,57)(25,48,35,58)(26,49,36,59)(27,50,37,60)(28,51,38,41)(29,52,39,42)(30,53,40,43)(61,93,71,83)(62,94,72,84)(63,95,73,85)(64,96,74,86)(65,97,75,87)(66,98,76,88)(67,99,77,89)(68,100,78,90)(69,81,79,91)(70,82,80,92)(101,139,111,129)(102,140,112,130)(103,121,113,131)(104,122,114,132)(105,123,115,133)(106,124,116,134)(107,125,117,135)(108,126,118,136)(109,127,119,137)(110,128,120,138), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,31)(22,30)(23,29)(24,28)(25,27)(32,40)(33,39)(34,38)(35,37)(41,57)(42,56)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)(58,60)(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69)(76,80)(77,79)(81,99)(82,98)(83,97)(84,96)(85,95)(86,94)(87,93)(88,92)(89,91)(101,109)(102,108)(103,107)(104,106)(110,120)(111,119)(112,118)(113,117)(114,116)(121,125)(122,124)(126,140)(127,139)(128,138)(129,137)(130,136)(131,135)(132,134)(141,151)(142,150)(143,149)(144,148)(145,147)(152,160)(153,159)(154,158)(155,157)>;

G:=Group( (1,52,71,136)(2,53,72,137)(3,54,73,138)(4,55,74,139)(5,56,75,140)(6,57,76,121)(7,58,77,122)(8,59,78,123)(9,60,79,124)(10,41,80,125)(11,42,61,126)(12,43,62,127)(13,44,63,128)(14,45,64,129)(15,46,65,130)(16,47,66,131)(17,48,67,132)(18,49,68,133)(19,50,69,134)(20,51,70,135)(21,85,110,151)(22,86,111,152)(23,87,112,153)(24,88,113,154)(25,89,114,155)(26,90,115,156)(27,91,116,157)(28,92,117,158)(29,93,118,159)(30,94,119,160)(31,95,120,141)(32,96,101,142)(33,97,102,143)(34,98,103,144)(35,99,104,145)(36,100,105,146)(37,81,106,147)(38,82,107,148)(39,83,108,149)(40,84,109,150), (1,149,11,159)(2,150,12,160)(3,151,13,141)(4,152,14,142)(5,153,15,143)(6,154,16,144)(7,155,17,145)(8,156,18,146)(9,157,19,147)(10,158,20,148)(21,44,31,54)(22,45,32,55)(23,46,33,56)(24,47,34,57)(25,48,35,58)(26,49,36,59)(27,50,37,60)(28,51,38,41)(29,52,39,42)(30,53,40,43)(61,93,71,83)(62,94,72,84)(63,95,73,85)(64,96,74,86)(65,97,75,87)(66,98,76,88)(67,99,77,89)(68,100,78,90)(69,81,79,91)(70,82,80,92)(101,139,111,129)(102,140,112,130)(103,121,113,131)(104,122,114,132)(105,123,115,133)(106,124,116,134)(107,125,117,135)(108,126,118,136)(109,127,119,137)(110,128,120,138), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,31)(22,30)(23,29)(24,28)(25,27)(32,40)(33,39)(34,38)(35,37)(41,57)(42,56)(43,55)(44,54)(45,53)(46,52)(47,51)(48,50)(58,60)(61,75)(62,74)(63,73)(64,72)(65,71)(66,70)(67,69)(76,80)(77,79)(81,99)(82,98)(83,97)(84,96)(85,95)(86,94)(87,93)(88,92)(89,91)(101,109)(102,108)(103,107)(104,106)(110,120)(111,119)(112,118)(113,117)(114,116)(121,125)(122,124)(126,140)(127,139)(128,138)(129,137)(130,136)(131,135)(132,134)(141,151)(142,150)(143,149)(144,148)(145,147)(152,160)(153,159)(154,158)(155,157) );

G=PermutationGroup([[(1,52,71,136),(2,53,72,137),(3,54,73,138),(4,55,74,139),(5,56,75,140),(6,57,76,121),(7,58,77,122),(8,59,78,123),(9,60,79,124),(10,41,80,125),(11,42,61,126),(12,43,62,127),(13,44,63,128),(14,45,64,129),(15,46,65,130),(16,47,66,131),(17,48,67,132),(18,49,68,133),(19,50,69,134),(20,51,70,135),(21,85,110,151),(22,86,111,152),(23,87,112,153),(24,88,113,154),(25,89,114,155),(26,90,115,156),(27,91,116,157),(28,92,117,158),(29,93,118,159),(30,94,119,160),(31,95,120,141),(32,96,101,142),(33,97,102,143),(34,98,103,144),(35,99,104,145),(36,100,105,146),(37,81,106,147),(38,82,107,148),(39,83,108,149),(40,84,109,150)], [(1,149,11,159),(2,150,12,160),(3,151,13,141),(4,152,14,142),(5,153,15,143),(6,154,16,144),(7,155,17,145),(8,156,18,146),(9,157,19,147),(10,158,20,148),(21,44,31,54),(22,45,32,55),(23,46,33,56),(24,47,34,57),(25,48,35,58),(26,49,36,59),(27,50,37,60),(28,51,38,41),(29,52,39,42),(30,53,40,43),(61,93,71,83),(62,94,72,84),(63,95,73,85),(64,96,74,86),(65,97,75,87),(66,98,76,88),(67,99,77,89),(68,100,78,90),(69,81,79,91),(70,82,80,92),(101,139,111,129),(102,140,112,130),(103,121,113,131),(104,122,114,132),(105,123,115,133),(106,124,116,134),(107,125,117,135),(108,126,118,136),(109,127,119,137),(110,128,120,138)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,31),(22,30),(23,29),(24,28),(25,27),(32,40),(33,39),(34,38),(35,37),(41,57),(42,56),(43,55),(44,54),(45,53),(46,52),(47,51),(48,50),(58,60),(61,75),(62,74),(63,73),(64,72),(65,71),(66,70),(67,69),(76,80),(77,79),(81,99),(82,98),(83,97),(84,96),(85,95),(86,94),(87,93),(88,92),(89,91),(101,109),(102,108),(103,107),(104,106),(110,120),(111,119),(112,118),(113,117),(114,116),(121,125),(122,124),(126,140),(127,139),(128,138),(129,137),(130,136),(131,135),(132,134),(141,151),(142,150),(143,149),(144,148),(145,147),(152,160),(153,159),(154,158),(155,157)]])

104 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A···4L4M···4R4S···4AD5A5B10A···10N20A···20AV
order12222222224···44···44···45510···1020···20
size111122101010101···12···210···10222···22···2

104 irreducible representations

dim1111111111222222
type++++++++++++
imageC1C2C2C2C2C2C2C2C2C4D5C4○D4D10D10C4×D5C4○D20
kernelC4×C4○D20C4×Dic10D5×C42C42⋊D5C4×D20C23.21D10C4×C5⋊D4C2×C4×C20C2×C4○D20C4○D20C2×C42C20C42C22×C4C2×C4C4
# reps1222214111628861632

Matrix representation of C4×C4○D20 in GL3(𝔽41) generated by

900
0400
0040
,
100
0320
0032
,
4000
03039
01614
,
4000
010
0840
G:=sub<GL(3,GF(41))| [9,0,0,0,40,0,0,0,40],[1,0,0,0,32,0,0,0,32],[40,0,0,0,30,16,0,39,14],[40,0,0,0,1,8,0,0,40] >;

C4×C4○D20 in GAP, Magma, Sage, TeX

C_4\times C_4\circ D_{20}
% in TeX

G:=Group("C4xC4oD20");
// GroupNames label

G:=SmallGroup(320,1146);
// by ID

G=gap.SmallGroup(320,1146);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^10=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c^9>;
// generators/relations

׿
×
𝔽