metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4⋊C4.178D10, (D4×Dic5)⋊16C2, C4⋊D4.10D5, (C2×D4).152D10, C22⋊C4.47D10, C4.Dic10⋊18C2, Dic5⋊3Q8⋊21C2, C20.201(C4○D4), C20.17D4⋊15C2, C4.67(D4⋊2D5), C20.48D4⋊31C2, (C2×C10).144C24, (C2×C20).501C23, (C22×C4).367D10, C23.11(C22×D5), Dic5.72(C4○D4), (D4×C10).118C22, C23.11D10⋊4C2, C23.D10⋊14C2, C22.5(D4⋊2D5), C23.18D10⋊7C2, C4⋊Dic5.205C22, (C22×C10).15C23, (C4×Dic5).99C22, C22.165(C23×D5), C23.D5.21C22, (C22×C20).238C22, C5⋊6(C23.36C23), (C2×Dic5).236C23, C10.D4.15C22, (C2×Dic10).158C22, (C22×Dic5).105C22, (C2×C4×Dic5)⋊8C2, C2.35(D5×C4○D4), (C5×C4⋊D4).7C2, C10.149(C2×C4○D4), C2.32(C2×D4⋊2D5), (C2×C10).20(C4○D4), (C5×C4⋊C4).140C22, (C2×C4).292(C22×D5), (C5×C22⋊C4).9C22, SmallGroup(320,1272)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4⋊C4.178D10
G = < a,b,c,d | a4=b4=c10=1, d2=a2b2, bab-1=a-1, ac=ca, ad=da, cbc-1=dbd-1=b-1, dcd-1=c-1 >
Subgroups: 670 in 234 conjugacy classes, 101 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, Dic5, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C2×C42, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, Dic10, C2×Dic5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C23.36C23, C4×Dic5, C4×Dic5, C10.D4, C4⋊Dic5, C4⋊Dic5, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C22×Dic5, C22×Dic5, C22×C20, D4×C10, D4×C10, C23.11D10, C23.D10, Dic5⋊3Q8, C4.Dic10, C2×C4×Dic5, C20.48D4, D4×Dic5, D4×Dic5, C23.18D10, C20.17D4, C5×C4⋊D4, C4⋊C4.178D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, C22×D5, C23.36C23, D4⋊2D5, C23×D5, C2×D4⋊2D5, D5×C4○D4, C4⋊C4.178D10
(1 27 33 46)(2 28 34 47)(3 29 35 48)(4 30 36 49)(5 21 37 50)(6 22 38 41)(7 23 39 42)(8 24 40 43)(9 25 31 44)(10 26 32 45)(11 74 54 112)(12 75 55 113)(13 76 56 114)(14 77 57 115)(15 78 58 116)(16 79 59 117)(17 80 60 118)(18 71 51 119)(19 72 52 120)(20 73 53 111)(61 96 158 148)(62 97 159 149)(63 98 160 150)(64 99 151 141)(65 100 152 142)(66 91 153 143)(67 92 154 144)(68 93 155 145)(69 94 156 146)(70 95 157 147)(81 127 139 108)(82 128 140 109)(83 129 131 110)(84 130 132 101)(85 121 133 102)(86 122 134 103)(87 123 135 104)(88 124 136 105)(89 125 137 106)(90 126 138 107)
(1 116 111 6)(2 7 112 117)(3 118 113 8)(4 9 114 119)(5 120 115 10)(11 59 28 42)(12 43 29 60)(13 51 30 44)(14 45 21 52)(15 53 22 46)(16 47 23 54)(17 55 24 48)(18 49 25 56)(19 57 26 50)(20 41 27 58)(31 76 71 36)(32 37 72 77)(33 78 73 38)(34 39 74 79)(35 80 75 40)(61 66 108 103)(62 104 109 67)(63 68 110 105)(64 106 101 69)(65 70 102 107)(81 134 96 143)(82 144 97 135)(83 136 98 145)(84 146 99 137)(85 138 100 147)(86 148 91 139)(87 140 92 149)(88 150 93 131)(89 132 94 141)(90 142 95 133)(121 126 152 157)(122 158 153 127)(123 128 154 159)(124 160 155 129)(125 130 156 151)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 156 73 106)(2 155 74 105)(3 154 75 104)(4 153 76 103)(5 152 77 102)(6 151 78 101)(7 160 79 110)(8 159 80 109)(9 158 71 108)(10 157 72 107)(11 136 47 93)(12 135 48 92)(13 134 49 91)(14 133 50 100)(15 132 41 99)(16 131 42 98)(17 140 43 97)(18 139 44 96)(19 138 45 95)(20 137 46 94)(21 142 57 85)(22 141 58 84)(23 150 59 83)(24 149 60 82)(25 148 51 81)(26 147 52 90)(27 146 53 89)(28 145 54 88)(29 144 55 87)(30 143 56 86)(31 61 119 127)(32 70 120 126)(33 69 111 125)(34 68 112 124)(35 67 113 123)(36 66 114 122)(37 65 115 121)(38 64 116 130)(39 63 117 129)(40 62 118 128)
G:=sub<Sym(160)| (1,27,33,46)(2,28,34,47)(3,29,35,48)(4,30,36,49)(5,21,37,50)(6,22,38,41)(7,23,39,42)(8,24,40,43)(9,25,31,44)(10,26,32,45)(11,74,54,112)(12,75,55,113)(13,76,56,114)(14,77,57,115)(15,78,58,116)(16,79,59,117)(17,80,60,118)(18,71,51,119)(19,72,52,120)(20,73,53,111)(61,96,158,148)(62,97,159,149)(63,98,160,150)(64,99,151,141)(65,100,152,142)(66,91,153,143)(67,92,154,144)(68,93,155,145)(69,94,156,146)(70,95,157,147)(81,127,139,108)(82,128,140,109)(83,129,131,110)(84,130,132,101)(85,121,133,102)(86,122,134,103)(87,123,135,104)(88,124,136,105)(89,125,137,106)(90,126,138,107), (1,116,111,6)(2,7,112,117)(3,118,113,8)(4,9,114,119)(5,120,115,10)(11,59,28,42)(12,43,29,60)(13,51,30,44)(14,45,21,52)(15,53,22,46)(16,47,23,54)(17,55,24,48)(18,49,25,56)(19,57,26,50)(20,41,27,58)(31,76,71,36)(32,37,72,77)(33,78,73,38)(34,39,74,79)(35,80,75,40)(61,66,108,103)(62,104,109,67)(63,68,110,105)(64,106,101,69)(65,70,102,107)(81,134,96,143)(82,144,97,135)(83,136,98,145)(84,146,99,137)(85,138,100,147)(86,148,91,139)(87,140,92,149)(88,150,93,131)(89,132,94,141)(90,142,95,133)(121,126,152,157)(122,158,153,127)(123,128,154,159)(124,160,155,129)(125,130,156,151), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,156,73,106)(2,155,74,105)(3,154,75,104)(4,153,76,103)(5,152,77,102)(6,151,78,101)(7,160,79,110)(8,159,80,109)(9,158,71,108)(10,157,72,107)(11,136,47,93)(12,135,48,92)(13,134,49,91)(14,133,50,100)(15,132,41,99)(16,131,42,98)(17,140,43,97)(18,139,44,96)(19,138,45,95)(20,137,46,94)(21,142,57,85)(22,141,58,84)(23,150,59,83)(24,149,60,82)(25,148,51,81)(26,147,52,90)(27,146,53,89)(28,145,54,88)(29,144,55,87)(30,143,56,86)(31,61,119,127)(32,70,120,126)(33,69,111,125)(34,68,112,124)(35,67,113,123)(36,66,114,122)(37,65,115,121)(38,64,116,130)(39,63,117,129)(40,62,118,128)>;
G:=Group( (1,27,33,46)(2,28,34,47)(3,29,35,48)(4,30,36,49)(5,21,37,50)(6,22,38,41)(7,23,39,42)(8,24,40,43)(9,25,31,44)(10,26,32,45)(11,74,54,112)(12,75,55,113)(13,76,56,114)(14,77,57,115)(15,78,58,116)(16,79,59,117)(17,80,60,118)(18,71,51,119)(19,72,52,120)(20,73,53,111)(61,96,158,148)(62,97,159,149)(63,98,160,150)(64,99,151,141)(65,100,152,142)(66,91,153,143)(67,92,154,144)(68,93,155,145)(69,94,156,146)(70,95,157,147)(81,127,139,108)(82,128,140,109)(83,129,131,110)(84,130,132,101)(85,121,133,102)(86,122,134,103)(87,123,135,104)(88,124,136,105)(89,125,137,106)(90,126,138,107), (1,116,111,6)(2,7,112,117)(3,118,113,8)(4,9,114,119)(5,120,115,10)(11,59,28,42)(12,43,29,60)(13,51,30,44)(14,45,21,52)(15,53,22,46)(16,47,23,54)(17,55,24,48)(18,49,25,56)(19,57,26,50)(20,41,27,58)(31,76,71,36)(32,37,72,77)(33,78,73,38)(34,39,74,79)(35,80,75,40)(61,66,108,103)(62,104,109,67)(63,68,110,105)(64,106,101,69)(65,70,102,107)(81,134,96,143)(82,144,97,135)(83,136,98,145)(84,146,99,137)(85,138,100,147)(86,148,91,139)(87,140,92,149)(88,150,93,131)(89,132,94,141)(90,142,95,133)(121,126,152,157)(122,158,153,127)(123,128,154,159)(124,160,155,129)(125,130,156,151), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,156,73,106)(2,155,74,105)(3,154,75,104)(4,153,76,103)(5,152,77,102)(6,151,78,101)(7,160,79,110)(8,159,80,109)(9,158,71,108)(10,157,72,107)(11,136,47,93)(12,135,48,92)(13,134,49,91)(14,133,50,100)(15,132,41,99)(16,131,42,98)(17,140,43,97)(18,139,44,96)(19,138,45,95)(20,137,46,94)(21,142,57,85)(22,141,58,84)(23,150,59,83)(24,149,60,82)(25,148,51,81)(26,147,52,90)(27,146,53,89)(28,145,54,88)(29,144,55,87)(30,143,56,86)(31,61,119,127)(32,70,120,126)(33,69,111,125)(34,68,112,124)(35,67,113,123)(36,66,114,122)(37,65,115,121)(38,64,116,130)(39,63,117,129)(40,62,118,128) );
G=PermutationGroup([[(1,27,33,46),(2,28,34,47),(3,29,35,48),(4,30,36,49),(5,21,37,50),(6,22,38,41),(7,23,39,42),(8,24,40,43),(9,25,31,44),(10,26,32,45),(11,74,54,112),(12,75,55,113),(13,76,56,114),(14,77,57,115),(15,78,58,116),(16,79,59,117),(17,80,60,118),(18,71,51,119),(19,72,52,120),(20,73,53,111),(61,96,158,148),(62,97,159,149),(63,98,160,150),(64,99,151,141),(65,100,152,142),(66,91,153,143),(67,92,154,144),(68,93,155,145),(69,94,156,146),(70,95,157,147),(81,127,139,108),(82,128,140,109),(83,129,131,110),(84,130,132,101),(85,121,133,102),(86,122,134,103),(87,123,135,104),(88,124,136,105),(89,125,137,106),(90,126,138,107)], [(1,116,111,6),(2,7,112,117),(3,118,113,8),(4,9,114,119),(5,120,115,10),(11,59,28,42),(12,43,29,60),(13,51,30,44),(14,45,21,52),(15,53,22,46),(16,47,23,54),(17,55,24,48),(18,49,25,56),(19,57,26,50),(20,41,27,58),(31,76,71,36),(32,37,72,77),(33,78,73,38),(34,39,74,79),(35,80,75,40),(61,66,108,103),(62,104,109,67),(63,68,110,105),(64,106,101,69),(65,70,102,107),(81,134,96,143),(82,144,97,135),(83,136,98,145),(84,146,99,137),(85,138,100,147),(86,148,91,139),(87,140,92,149),(88,150,93,131),(89,132,94,141),(90,142,95,133),(121,126,152,157),(122,158,153,127),(123,128,154,159),(124,160,155,129),(125,130,156,151)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,156,73,106),(2,155,74,105),(3,154,75,104),(4,153,76,103),(5,152,77,102),(6,151,78,101),(7,160,79,110),(8,159,80,109),(9,158,71,108),(10,157,72,107),(11,136,47,93),(12,135,48,92),(13,134,49,91),(14,133,50,100),(15,132,41,99),(16,131,42,98),(17,140,43,97),(18,139,44,96),(19,138,45,95),(20,137,46,94),(21,142,57,85),(22,141,58,84),(23,150,59,83),(24,149,60,82),(25,148,51,81),(26,147,52,90),(27,146,53,89),(28,145,54,88),(29,144,55,87),(30,143,56,86),(31,61,119,127),(32,70,120,126),(33,69,111,125),(34,68,112,124),(35,67,113,123),(36,66,114,122),(37,65,115,121),(38,64,116,130),(39,63,117,129),(40,62,118,128)]])
56 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | ··· | 4P | 4Q | 4R | 4S | 4T | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 10M | 10N | 20A | ··· | 20H | 20I | 20J | 20K | 20L |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 |
| size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
56 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | ||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | C4○D4 | C4○D4 | D10 | D10 | D10 | D10 | D4⋊2D5 | D4⋊2D5 | D5×C4○D4 |
| kernel | C4⋊C4.178D10 | C23.11D10 | C23.D10 | Dic5⋊3Q8 | C4.Dic10 | C2×C4×Dic5 | C20.48D4 | D4×Dic5 | C23.18D10 | C20.17D4 | C5×C4⋊D4 | C4⋊D4 | Dic5 | C20 | C2×C10 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | C4 | C22 | C2 |
| # reps | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 6 | 4 | 4 | 4 |
Matrix representation of C4⋊C4.178D10 ►in GL6(𝔽41)
| 1 | 5 | 0 | 0 | 0 | 0 |
| 16 | 40 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 25 | 0 | 0 |
| 0 | 0 | 36 | 40 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 9 | 4 | 0 | 0 | 0 | 0 |
| 0 | 32 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 25 | 0 | 0 |
| 0 | 0 | 0 | 40 | 0 | 0 |
| 0 | 0 | 0 | 0 | 40 | 0 |
| 0 | 0 | 0 | 0 | 0 | 40 |
| 9 | 4 | 0 | 0 | 0 | 0 |
| 21 | 32 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 7 | 6 |
| 0 | 0 | 0 | 0 | 34 | 0 |
| 32 | 37 | 0 | 0 | 0 | 0 |
| 20 | 9 | 0 | 0 | 0 | 0 |
| 0 | 0 | 9 | 0 | 0 | 0 |
| 0 | 0 | 0 | 9 | 0 | 0 |
| 0 | 0 | 0 | 0 | 40 | 0 |
| 0 | 0 | 0 | 0 | 8 | 1 |
G:=sub<GL(6,GF(41))| [1,16,0,0,0,0,5,40,0,0,0,0,0,0,1,36,0,0,0,0,25,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[9,0,0,0,0,0,4,32,0,0,0,0,0,0,1,0,0,0,0,0,25,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[9,21,0,0,0,0,4,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,34,0,0,0,0,6,0],[32,20,0,0,0,0,37,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,40,8,0,0,0,0,0,1] >;
C4⋊C4.178D10 in GAP, Magma, Sage, TeX
C_4\rtimes C_4._{178}D_{10} % in TeX
G:=Group("C4:C4.178D10"); // GroupNames label
G:=SmallGroup(320,1272);
// by ID
G=gap.SmallGroup(320,1272);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,100,794,297,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2*b^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations