Copied to
clipboard

G = Dic1020D4order 320 = 26·5

8th semidirect product of Dic10 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic1020D4, C10.332+ 1+4, C4⋊D47D5, C53(Q86D4), C4.109(D4×D5), C20⋊D415C2, C4⋊D2019C2, C4⋊C4.177D10, (C2×D4).90D10, C20.225(C2×D4), D10⋊D417C2, Dic58(C4○D4), Dic54D46C2, (C2×C20).35C23, C22⋊C4.46D10, Dic5.45(C2×D4), C10.62(C22×D4), Dic53Q820C2, Dic5⋊D410C2, (C2×C10).143C24, (C22×C4).219D10, C2.35(D46D10), C23.10(C22×D5), (C2×D20).148C22, (D4×C10).117C22, (C22×C10).14C23, (C4×Dic5).98C22, (C22×D5).62C23, C22.164(C23×D5), D10⋊C4.12C22, (C22×C20).237C22, (C2×Dic5).235C23, C10.D4.14C22, C23.D5.110C22, (C2×Dic10).301C22, (C22×Dic5).104C22, C2.35(C2×D4×D5), (C5×C4⋊D4)⋊8C2, (C4×C5⋊D4)⋊15C2, C2.34(D5×C4○D4), (C2×C4○D20)⋊19C2, (C2×D42D5)⋊11C2, (C2×C4×D5).91C22, C10.148(C2×C4○D4), (C5×C4⋊C4).139C22, (C2×C4).585(C22×D5), (C2×C5⋊D4).25C22, (C5×C22⋊C4).8C22, SmallGroup(320,1271)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Dic1020D4
C1C5C10C2×C10C2×Dic5C2×Dic10C2×C4○D20 — Dic1020D4
C5C2×C10 — Dic1020D4
C1C22C4⋊D4

Generators and relations for Dic1020D4
 G = < a,b,c,d | a20=c4=d2=1, b2=a10, bab-1=a-1, cac-1=a11, ad=da, cbc-1=dbd=a10b, dcd=c-1 >

Subgroups: 1222 in 312 conjugacy classes, 105 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, C2×C10, C2×C10, C4×D4, C4×Q8, C4⋊D4, C4⋊D4, C41D4, C2×C4○D4, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×D5, C22×D5, C22×C10, C22×C10, Q86D4, C4×Dic5, C4×Dic5, C10.D4, C10.D4, D10⋊C4, D10⋊C4, C23.D5, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, C4○D20, D42D5, C22×Dic5, C2×C5⋊D4, C2×C5⋊D4, C22×C20, D4×C10, D4×C10, Dic54D4, D10⋊D4, Dic53Q8, C4⋊D20, C4×C5⋊D4, Dic5⋊D4, C20⋊D4, C20⋊D4, C5×C4⋊D4, C2×C4○D20, C2×D42D5, Dic1020D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C22×D4, C2×C4○D4, 2+ 1+4, C22×D5, Q86D4, D4×D5, C23×D5, C2×D4×D5, D46D10, D5×C4○D4, Dic1020D4

Smallest permutation representation of Dic1020D4
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 80 11 70)(2 79 12 69)(3 78 13 68)(4 77 14 67)(5 76 15 66)(6 75 16 65)(7 74 17 64)(8 73 18 63)(9 72 19 62)(10 71 20 61)(21 137 31 127)(22 136 32 126)(23 135 33 125)(24 134 34 124)(25 133 35 123)(26 132 36 122)(27 131 37 121)(28 130 38 140)(29 129 39 139)(30 128 40 138)(41 152 51 142)(42 151 52 141)(43 150 53 160)(44 149 54 159)(45 148 55 158)(46 147 56 157)(47 146 57 156)(48 145 58 155)(49 144 59 154)(50 143 60 153)(81 109 91 119)(82 108 92 118)(83 107 93 117)(84 106 94 116)(85 105 95 115)(86 104 96 114)(87 103 97 113)(88 102 98 112)(89 101 99 111)(90 120 100 110)
(1 30 159 114)(2 21 160 105)(3 32 141 116)(4 23 142 107)(5 34 143 118)(6 25 144 109)(7 36 145 120)(8 27 146 111)(9 38 147 102)(10 29 148 113)(11 40 149 104)(12 31 150 115)(13 22 151 106)(14 33 152 117)(15 24 153 108)(16 35 154 119)(17 26 155 110)(18 37 156 101)(19 28 157 112)(20 39 158 103)(41 83 77 125)(42 94 78 136)(43 85 79 127)(44 96 80 138)(45 87 61 129)(46 98 62 140)(47 89 63 131)(48 100 64 122)(49 91 65 133)(50 82 66 124)(51 93 67 135)(52 84 68 126)(53 95 69 137)(54 86 70 128)(55 97 71 139)(56 88 72 130)(57 99 73 121)(58 90 74 132)(59 81 75 123)(60 92 76 134)
(1 75)(2 76)(3 77)(4 78)(5 79)(6 80)(7 61)(8 62)(9 63)(10 64)(11 65)(12 66)(13 67)(14 68)(15 69)(16 70)(17 71)(18 72)(19 73)(20 74)(21 92)(22 93)(23 94)(24 95)(25 96)(26 97)(27 98)(28 99)(29 100)(30 81)(31 82)(32 83)(33 84)(34 85)(35 86)(36 87)(37 88)(38 89)(39 90)(40 91)(41 141)(42 142)(43 143)(44 144)(45 145)(46 146)(47 147)(48 148)(49 149)(50 150)(51 151)(52 152)(53 153)(54 154)(55 155)(56 156)(57 157)(58 158)(59 159)(60 160)(101 130)(102 131)(103 132)(104 133)(105 134)(106 135)(107 136)(108 137)(109 138)(110 139)(111 140)(112 121)(113 122)(114 123)(115 124)(116 125)(117 126)(118 127)(119 128)(120 129)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,80,11,70)(2,79,12,69)(3,78,13,68)(4,77,14,67)(5,76,15,66)(6,75,16,65)(7,74,17,64)(8,73,18,63)(9,72,19,62)(10,71,20,61)(21,137,31,127)(22,136,32,126)(23,135,33,125)(24,134,34,124)(25,133,35,123)(26,132,36,122)(27,131,37,121)(28,130,38,140)(29,129,39,139)(30,128,40,138)(41,152,51,142)(42,151,52,141)(43,150,53,160)(44,149,54,159)(45,148,55,158)(46,147,56,157)(47,146,57,156)(48,145,58,155)(49,144,59,154)(50,143,60,153)(81,109,91,119)(82,108,92,118)(83,107,93,117)(84,106,94,116)(85,105,95,115)(86,104,96,114)(87,103,97,113)(88,102,98,112)(89,101,99,111)(90,120,100,110), (1,30,159,114)(2,21,160,105)(3,32,141,116)(4,23,142,107)(5,34,143,118)(6,25,144,109)(7,36,145,120)(8,27,146,111)(9,38,147,102)(10,29,148,113)(11,40,149,104)(12,31,150,115)(13,22,151,106)(14,33,152,117)(15,24,153,108)(16,35,154,119)(17,26,155,110)(18,37,156,101)(19,28,157,112)(20,39,158,103)(41,83,77,125)(42,94,78,136)(43,85,79,127)(44,96,80,138)(45,87,61,129)(46,98,62,140)(47,89,63,131)(48,100,64,122)(49,91,65,133)(50,82,66,124)(51,93,67,135)(52,84,68,126)(53,95,69,137)(54,86,70,128)(55,97,71,139)(56,88,72,130)(57,99,73,121)(58,90,74,132)(59,81,75,123)(60,92,76,134), (1,75)(2,76)(3,77)(4,78)(5,79)(6,80)(7,61)(8,62)(9,63)(10,64)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(19,73)(20,74)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,81)(31,82)(32,83)(33,84)(34,85)(35,86)(36,87)(37,88)(38,89)(39,90)(40,91)(41,141)(42,142)(43,143)(44,144)(45,145)(46,146)(47,147)(48,148)(49,149)(50,150)(51,151)(52,152)(53,153)(54,154)(55,155)(56,156)(57,157)(58,158)(59,159)(60,160)(101,130)(102,131)(103,132)(104,133)(105,134)(106,135)(107,136)(108,137)(109,138)(110,139)(111,140)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126)(118,127)(119,128)(120,129)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,80,11,70)(2,79,12,69)(3,78,13,68)(4,77,14,67)(5,76,15,66)(6,75,16,65)(7,74,17,64)(8,73,18,63)(9,72,19,62)(10,71,20,61)(21,137,31,127)(22,136,32,126)(23,135,33,125)(24,134,34,124)(25,133,35,123)(26,132,36,122)(27,131,37,121)(28,130,38,140)(29,129,39,139)(30,128,40,138)(41,152,51,142)(42,151,52,141)(43,150,53,160)(44,149,54,159)(45,148,55,158)(46,147,56,157)(47,146,57,156)(48,145,58,155)(49,144,59,154)(50,143,60,153)(81,109,91,119)(82,108,92,118)(83,107,93,117)(84,106,94,116)(85,105,95,115)(86,104,96,114)(87,103,97,113)(88,102,98,112)(89,101,99,111)(90,120,100,110), (1,30,159,114)(2,21,160,105)(3,32,141,116)(4,23,142,107)(5,34,143,118)(6,25,144,109)(7,36,145,120)(8,27,146,111)(9,38,147,102)(10,29,148,113)(11,40,149,104)(12,31,150,115)(13,22,151,106)(14,33,152,117)(15,24,153,108)(16,35,154,119)(17,26,155,110)(18,37,156,101)(19,28,157,112)(20,39,158,103)(41,83,77,125)(42,94,78,136)(43,85,79,127)(44,96,80,138)(45,87,61,129)(46,98,62,140)(47,89,63,131)(48,100,64,122)(49,91,65,133)(50,82,66,124)(51,93,67,135)(52,84,68,126)(53,95,69,137)(54,86,70,128)(55,97,71,139)(56,88,72,130)(57,99,73,121)(58,90,74,132)(59,81,75,123)(60,92,76,134), (1,75)(2,76)(3,77)(4,78)(5,79)(6,80)(7,61)(8,62)(9,63)(10,64)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(19,73)(20,74)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,81)(31,82)(32,83)(33,84)(34,85)(35,86)(36,87)(37,88)(38,89)(39,90)(40,91)(41,141)(42,142)(43,143)(44,144)(45,145)(46,146)(47,147)(48,148)(49,149)(50,150)(51,151)(52,152)(53,153)(54,154)(55,155)(56,156)(57,157)(58,158)(59,159)(60,160)(101,130)(102,131)(103,132)(104,133)(105,134)(106,135)(107,136)(108,137)(109,138)(110,139)(111,140)(112,121)(113,122)(114,123)(115,124)(116,125)(117,126)(118,127)(119,128)(120,129) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,80,11,70),(2,79,12,69),(3,78,13,68),(4,77,14,67),(5,76,15,66),(6,75,16,65),(7,74,17,64),(8,73,18,63),(9,72,19,62),(10,71,20,61),(21,137,31,127),(22,136,32,126),(23,135,33,125),(24,134,34,124),(25,133,35,123),(26,132,36,122),(27,131,37,121),(28,130,38,140),(29,129,39,139),(30,128,40,138),(41,152,51,142),(42,151,52,141),(43,150,53,160),(44,149,54,159),(45,148,55,158),(46,147,56,157),(47,146,57,156),(48,145,58,155),(49,144,59,154),(50,143,60,153),(81,109,91,119),(82,108,92,118),(83,107,93,117),(84,106,94,116),(85,105,95,115),(86,104,96,114),(87,103,97,113),(88,102,98,112),(89,101,99,111),(90,120,100,110)], [(1,30,159,114),(2,21,160,105),(3,32,141,116),(4,23,142,107),(5,34,143,118),(6,25,144,109),(7,36,145,120),(8,27,146,111),(9,38,147,102),(10,29,148,113),(11,40,149,104),(12,31,150,115),(13,22,151,106),(14,33,152,117),(15,24,153,108),(16,35,154,119),(17,26,155,110),(18,37,156,101),(19,28,157,112),(20,39,158,103),(41,83,77,125),(42,94,78,136),(43,85,79,127),(44,96,80,138),(45,87,61,129),(46,98,62,140),(47,89,63,131),(48,100,64,122),(49,91,65,133),(50,82,66,124),(51,93,67,135),(52,84,68,126),(53,95,69,137),(54,86,70,128),(55,97,71,139),(56,88,72,130),(57,99,73,121),(58,90,74,132),(59,81,75,123),(60,92,76,134)], [(1,75),(2,76),(3,77),(4,78),(5,79),(6,80),(7,61),(8,62),(9,63),(10,64),(11,65),(12,66),(13,67),(14,68),(15,69),(16,70),(17,71),(18,72),(19,73),(20,74),(21,92),(22,93),(23,94),(24,95),(25,96),(26,97),(27,98),(28,99),(29,100),(30,81),(31,82),(32,83),(33,84),(34,85),(35,86),(36,87),(37,88),(38,89),(39,90),(40,91),(41,141),(42,142),(43,143),(44,144),(45,145),(46,146),(47,147),(48,148),(49,149),(50,150),(51,151),(52,152),(53,153),(54,154),(55,155),(56,156),(57,157),(58,158),(59,159),(60,160),(101,130),(102,131),(103,132),(104,133),(105,134),(106,135),(107,136),(108,137),(109,138),(110,139),(111,140),(112,121),(113,122),(114,123),(115,124),(116,125),(117,126),(118,127),(119,128),(120,129)]])

53 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G···4N4O5A5B10A···10F10G10H10I10J10K10L10M10N20A···20H20I20J20K20L
order12222222224444444···445510···10101010101010101020···2020202020
size111144420202022224410···1020222···2444488884···48888

53 irreducible representations

dim1111111111122222224444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2D4D5C4○D4D10D10D10D102+ 1+4D4×D5D46D10D5×C4○D4
kernelDic1020D4Dic54D4D10⋊D4Dic53Q8C4⋊D20C4×C5⋊D4Dic5⋊D4C20⋊D4C5×C4⋊D4C2×C4○D20C2×D42D5Dic10C4⋊D4Dic5C22⋊C4C4⋊C4C22×C4C2×D4C10C4C2C2
# reps1221112311142442261444

Matrix representation of Dic1020D4 in GL6(𝔽41)

4000000
0400000
0022200
00241900
0000740
000010
,
4000000
0400000
009000
0073200
0000734
0000134
,
1400000
2400000
0072300
00213400
000010
000001
,
100000
2400000
0072300
00303400
000010
000001

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,22,24,0,0,0,0,2,19,0,0,0,0,0,0,7,1,0,0,0,0,40,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,7,0,0,0,0,0,32,0,0,0,0,0,0,7,1,0,0,0,0,34,34],[1,2,0,0,0,0,40,40,0,0,0,0,0,0,7,21,0,0,0,0,23,34,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,2,0,0,0,0,0,40,0,0,0,0,0,0,7,30,0,0,0,0,23,34,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

Dic1020D4 in GAP, Magma, Sage, TeX

{\rm Dic}_{10}\rtimes_{20}D_4
% in TeX

G:=Group("Dic10:20D4");
// GroupNames label

G:=SmallGroup(320,1271);
// by ID

G=gap.SmallGroup(320,1271);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,477,232,184,570,185,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^4=d^2=1,b^2=a^10,b*a*b^-1=a^-1,c*a*c^-1=a^11,a*d=d*a,c*b*c^-1=d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽