direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4×C4⋊F5, C42⋊7F5, C20⋊2C42, Dic5⋊5C42, C4⋊1(C4×F5), (C4×C20)⋊9C4, C20⋊3(C4⋊C4), D5.1(C4×D4), D5.1(C4×Q8), (C4×D5).88D4, (C4×D5).31Q8, D10.7(C2×Q8), Dic5⋊5(C4⋊C4), (C4×Dic5)⋊20C4, D10.24(C2×D4), C10.6(C2×C42), (D5×C42).27C2, D10.22(C4○D4), D10.28(C22×C4), C10.6(C42⋊C2), C22.32(C22×F5), D10.3Q8.10C2, (C22×F5).13C22, (C22×D5).264C23, C2.4(D10.C23), C5⋊1(C4×C4⋊C4), C2.8(C2×C4×F5), C2.2(C2×C4⋊F5), (C2×C4×F5).9C2, C10.4(C2×C4⋊C4), (C2×C4⋊F5).15C2, (C2×F5).1(C2×C4), (C4×D5).65(C2×C4), (C2×C4).162(C2×F5), (C2×C20).171(C2×C4), (C2×C4×D5).392C22, (C2×C10).25(C22×C4), (C2×Dic5).173(C2×C4), SmallGroup(320,1025)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4×C4⋊F5
G = < a,b,c,d | a4=b4=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >
Subgroups: 666 in 194 conjugacy classes, 86 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C23, D5, C10, C42, C42, C4⋊C4, C22×C4, Dic5, Dic5, C20, C20, F5, D10, D10, C2×C10, C2.C42, C2×C42, C2×C4⋊C4, C4×D5, C4×D5, C2×Dic5, C2×C20, C2×F5, C2×F5, C22×D5, C4×C4⋊C4, C4×Dic5, C4×C20, C4×F5, C4⋊F5, C2×C4×D5, C22×F5, D10.3Q8, D5×C42, C2×C4×F5, C2×C4⋊F5, C4×C4⋊F5
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C42, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, F5, C2×C42, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C2×F5, C4×C4⋊C4, C4×F5, C4⋊F5, C22×F5, C2×C4×F5, C2×C4⋊F5, D10.C23, C4×C4⋊F5
(1 34 14 24)(2 35 15 25)(3 31 11 21)(4 32 12 22)(5 33 13 23)(6 36 16 26)(7 37 17 27)(8 38 18 28)(9 39 19 29)(10 40 20 30)(41 71 51 61)(42 72 52 62)(43 73 53 63)(44 74 54 64)(45 75 55 65)(46 76 56 66)(47 77 57 67)(48 78 58 68)(49 79 59 69)(50 80 60 70)
(1 59 9 54)(2 60 10 55)(3 56 6 51)(4 57 7 52)(5 58 8 53)(11 46 16 41)(12 47 17 42)(13 48 18 43)(14 49 19 44)(15 50 20 45)(21 76 26 71)(22 77 27 72)(23 78 28 73)(24 79 29 74)(25 80 30 75)(31 66 36 61)(32 67 37 62)(33 68 38 63)(34 69 39 64)(35 70 40 65)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 24 14 34)(2 21 13 32)(3 23 12 35)(4 25 11 33)(5 22 15 31)(6 28 17 40)(7 30 16 38)(8 27 20 36)(9 29 19 39)(10 26 18 37)(41 68 52 80)(42 70 51 78)(43 67 55 76)(44 69 54 79)(45 66 53 77)(46 63 57 75)(47 65 56 73)(48 62 60 71)(49 64 59 74)(50 61 58 72)
G:=sub<Sym(80)| (1,34,14,24)(2,35,15,25)(3,31,11,21)(4,32,12,22)(5,33,13,23)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,71,51,61)(42,72,52,62)(43,73,53,63)(44,74,54,64)(45,75,55,65)(46,76,56,66)(47,77,57,67)(48,78,58,68)(49,79,59,69)(50,80,60,70), (1,59,9,54)(2,60,10,55)(3,56,6,51)(4,57,7,52)(5,58,8,53)(11,46,16,41)(12,47,17,42)(13,48,18,43)(14,49,19,44)(15,50,20,45)(21,76,26,71)(22,77,27,72)(23,78,28,73)(24,79,29,74)(25,80,30,75)(31,66,36,61)(32,67,37,62)(33,68,38,63)(34,69,39,64)(35,70,40,65), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,24,14,34)(2,21,13,32)(3,23,12,35)(4,25,11,33)(5,22,15,31)(6,28,17,40)(7,30,16,38)(8,27,20,36)(9,29,19,39)(10,26,18,37)(41,68,52,80)(42,70,51,78)(43,67,55,76)(44,69,54,79)(45,66,53,77)(46,63,57,75)(47,65,56,73)(48,62,60,71)(49,64,59,74)(50,61,58,72)>;
G:=Group( (1,34,14,24)(2,35,15,25)(3,31,11,21)(4,32,12,22)(5,33,13,23)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,71,51,61)(42,72,52,62)(43,73,53,63)(44,74,54,64)(45,75,55,65)(46,76,56,66)(47,77,57,67)(48,78,58,68)(49,79,59,69)(50,80,60,70), (1,59,9,54)(2,60,10,55)(3,56,6,51)(4,57,7,52)(5,58,8,53)(11,46,16,41)(12,47,17,42)(13,48,18,43)(14,49,19,44)(15,50,20,45)(21,76,26,71)(22,77,27,72)(23,78,28,73)(24,79,29,74)(25,80,30,75)(31,66,36,61)(32,67,37,62)(33,68,38,63)(34,69,39,64)(35,70,40,65), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,24,14,34)(2,21,13,32)(3,23,12,35)(4,25,11,33)(5,22,15,31)(6,28,17,40)(7,30,16,38)(8,27,20,36)(9,29,19,39)(10,26,18,37)(41,68,52,80)(42,70,51,78)(43,67,55,76)(44,69,54,79)(45,66,53,77)(46,63,57,75)(47,65,56,73)(48,62,60,71)(49,64,59,74)(50,61,58,72) );
G=PermutationGroup([[(1,34,14,24),(2,35,15,25),(3,31,11,21),(4,32,12,22),(5,33,13,23),(6,36,16,26),(7,37,17,27),(8,38,18,28),(9,39,19,29),(10,40,20,30),(41,71,51,61),(42,72,52,62),(43,73,53,63),(44,74,54,64),(45,75,55,65),(46,76,56,66),(47,77,57,67),(48,78,58,68),(49,79,59,69),(50,80,60,70)], [(1,59,9,54),(2,60,10,55),(3,56,6,51),(4,57,7,52),(5,58,8,53),(11,46,16,41),(12,47,17,42),(13,48,18,43),(14,49,19,44),(15,50,20,45),(21,76,26,71),(22,77,27,72),(23,78,28,73),(24,79,29,74),(25,80,30,75),(31,66,36,61),(32,67,37,62),(33,68,38,63),(34,69,39,64),(35,70,40,65)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,24,14,34),(2,21,13,32),(3,23,12,35),(4,25,11,33),(5,22,15,31),(6,28,17,40),(7,30,16,38),(8,27,20,36),(9,29,19,39),(10,26,18,37),(41,68,52,80),(42,70,51,78),(43,67,55,76),(44,69,54,79),(45,66,53,77),(46,63,57,75),(47,65,56,73),(48,62,60,71),(49,64,59,74),(50,61,58,72)]])
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | ··· | 4AF | 5 | 10A | 10B | 10C | 20A | ··· | 20L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 10 | 10 | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | - | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | Q8 | C4○D4 | F5 | C2×F5 | C4×F5 | C4⋊F5 | D10.C23 |
kernel | C4×C4⋊F5 | D10.3Q8 | D5×C42 | C2×C4×F5 | C2×C4⋊F5 | C4×Dic5 | C4×C20 | C4⋊F5 | C4×D5 | C4×D5 | D10 | C42 | C2×C4 | C4 | C4 | C2 |
# reps | 1 | 2 | 1 | 2 | 2 | 6 | 2 | 16 | 2 | 2 | 4 | 1 | 3 | 4 | 4 | 4 |
Matrix representation of C4×C4⋊F5 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 0 | 9 |
0 | 40 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 1 | 0 | 0 |
0 | 0 | 40 | 0 | 1 | 0 |
0 | 0 | 40 | 0 | 0 | 1 |
0 | 0 | 40 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 32 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 32 |
0 | 0 | 0 | 32 | 0 | 0 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,40,40,40,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[9,0,0,0,0,0,0,32,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,32,0,0,32,0,0,0,0,0,0,0,32,0] >;
C4×C4⋊F5 in GAP, Magma, Sage, TeX
C_4\times C_4\rtimes F_5
% in TeX
G:=Group("C4xC4:F5");
// GroupNames label
G:=SmallGroup(320,1025);
// by ID
G=gap.SmallGroup(320,1025);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,477,232,100,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations