Copied to
clipboard

G = D4×Dic10order 320 = 26·5

Direct product of D4 and Dic10

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4×Dic10, C42.101D10, C10.552- 1+4, C51(D4×Q8), (C5×D4)⋊5Q8, C201(C2×Q8), C20⋊Q814C2, (C4×D4).10D5, C41(C2×Dic10), C4.138(D4×D5), C4⋊C4.276D10, C202Q821C2, (D4×C20).11C2, C20.344(C2×D4), (C4×Dic10)⋊24C2, (C2×D4).241D10, C20.48D46C2, (C2×C10).81C24, (D4×Dic5).11C2, Dic5.40(C2×D4), C221(C2×Dic10), C10.45(C22×D4), C10.12(C22×Q8), (C4×C20).144C22, (C2×C20).153C23, C22⋊C4.104D10, (C22×Dic10)⋊8C2, (C22×C4).201D10, Dic5.14D46C2, C23.D5.7C22, (D4×C10).248C22, C4⋊Dic5.197C22, (C22×C20).76C22, (C4×Dic5).79C22, C2.14(C22×Dic10), C10.D4.5C22, C23.162(C22×D5), C22.109(C23×D5), (C22×C10).151C23, (C2×Dic5).209C23, C2.13(D4.10D10), (C2×Dic10).242C22, (C22×Dic5).90C22, C2.18(C2×D4×D5), (C2×C10)⋊1(C2×Q8), (C5×C4⋊C4).317C22, (C2×C4).152(C22×D5), (C5×C22⋊C4).103C22, SmallGroup(320,1209)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D4×Dic10
C1C5C10C2×C10C2×Dic5C22×Dic5D4×Dic5 — D4×Dic10
C5C2×C10 — D4×Dic10
C1C22C4×D4

Generators and relations for D4×Dic10
 G = < a,b,c,d | a4=b2=c20=1, d2=c10, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 886 in 280 conjugacy classes, 123 normal (29 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, Dic5, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C4×D4, C4×D4, C4×Q8, C22⋊Q8, C4⋊Q8, C22×Q8, Dic10, Dic10, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C2×C20, C5×D4, C22×C10, D4×Q8, C4×Dic5, C10.D4, C4⋊Dic5, C4⋊Dic5, C23.D5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×Dic10, C2×Dic10, C22×Dic5, C22×C20, D4×C10, C4×Dic10, C202Q8, Dic5.14D4, C20⋊Q8, C20.48D4, D4×Dic5, D4×C20, C22×Dic10, D4×Dic10
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C24, D10, C22×D4, C22×Q8, 2- 1+4, Dic10, C22×D5, D4×Q8, C2×Dic10, D4×D5, C23×D5, C22×Dic10, C2×D4×D5, D4.10D10, D4×Dic10

Smallest permutation representation of D4×Dic10
On 160 points
Generators in S160
(1 70 92 55)(2 71 93 56)(3 72 94 57)(4 73 95 58)(5 74 96 59)(6 75 97 60)(7 76 98 41)(8 77 99 42)(9 78 100 43)(10 79 81 44)(11 80 82 45)(12 61 83 46)(13 62 84 47)(14 63 85 48)(15 64 86 49)(16 65 87 50)(17 66 88 51)(18 67 89 52)(19 68 90 53)(20 69 91 54)(21 125 143 114)(22 126 144 115)(23 127 145 116)(24 128 146 117)(25 129 147 118)(26 130 148 119)(27 131 149 120)(28 132 150 101)(29 133 151 102)(30 134 152 103)(31 135 153 104)(32 136 154 105)(33 137 155 106)(34 138 156 107)(35 139 157 108)(36 140 158 109)(37 121 159 110)(38 122 160 111)(39 123 141 112)(40 124 142 113)
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 55)(12 56)(13 57)(14 58)(15 59)(16 60)(17 41)(18 42)(19 43)(20 44)(21 104)(22 105)(23 106)(24 107)(25 108)(26 109)(27 110)(28 111)(29 112)(30 113)(31 114)(32 115)(33 116)(34 117)(35 118)(36 119)(37 120)(38 101)(39 102)(40 103)(61 93)(62 94)(63 95)(64 96)(65 97)(66 98)(67 99)(68 100)(69 81)(70 82)(71 83)(72 84)(73 85)(74 86)(75 87)(76 88)(77 89)(78 90)(79 91)(80 92)(121 149)(122 150)(123 151)(124 152)(125 153)(126 154)(127 155)(128 156)(129 157)(130 158)(131 159)(132 160)(133 141)(134 142)(135 143)(136 144)(137 145)(138 146)(139 147)(140 148)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 30 11 40)(2 29 12 39)(3 28 13 38)(4 27 14 37)(5 26 15 36)(6 25 16 35)(7 24 17 34)(8 23 18 33)(9 22 19 32)(10 21 20 31)(41 117 51 107)(42 116 52 106)(43 115 53 105)(44 114 54 104)(45 113 55 103)(46 112 56 102)(47 111 57 101)(48 110 58 120)(49 109 59 119)(50 108 60 118)(61 123 71 133)(62 122 72 132)(63 121 73 131)(64 140 74 130)(65 139 75 129)(66 138 76 128)(67 137 77 127)(68 136 78 126)(69 135 79 125)(70 134 80 124)(81 143 91 153)(82 142 92 152)(83 141 93 151)(84 160 94 150)(85 159 95 149)(86 158 96 148)(87 157 97 147)(88 156 98 146)(89 155 99 145)(90 154 100 144)

G:=sub<Sym(160)| (1,70,92,55)(2,71,93,56)(3,72,94,57)(4,73,95,58)(5,74,96,59)(6,75,97,60)(7,76,98,41)(8,77,99,42)(9,78,100,43)(10,79,81,44)(11,80,82,45)(12,61,83,46)(13,62,84,47)(14,63,85,48)(15,64,86,49)(16,65,87,50)(17,66,88,51)(18,67,89,52)(19,68,90,53)(20,69,91,54)(21,125,143,114)(22,126,144,115)(23,127,145,116)(24,128,146,117)(25,129,147,118)(26,130,148,119)(27,131,149,120)(28,132,150,101)(29,133,151,102)(30,134,152,103)(31,135,153,104)(32,136,154,105)(33,137,155,106)(34,138,156,107)(35,139,157,108)(36,140,158,109)(37,121,159,110)(38,122,160,111)(39,123,141,112)(40,124,142,113), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,41)(18,42)(19,43)(20,44)(21,104)(22,105)(23,106)(24,107)(25,108)(26,109)(27,110)(28,111)(29,112)(30,113)(31,114)(32,115)(33,116)(34,117)(35,118)(36,119)(37,120)(38,101)(39,102)(40,103)(61,93)(62,94)(63,95)(64,96)(65,97)(66,98)(67,99)(68,100)(69,81)(70,82)(71,83)(72,84)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,91)(80,92)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,141)(134,142)(135,143)(136,144)(137,145)(138,146)(139,147)(140,148), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,30,11,40)(2,29,12,39)(3,28,13,38)(4,27,14,37)(5,26,15,36)(6,25,16,35)(7,24,17,34)(8,23,18,33)(9,22,19,32)(10,21,20,31)(41,117,51,107)(42,116,52,106)(43,115,53,105)(44,114,54,104)(45,113,55,103)(46,112,56,102)(47,111,57,101)(48,110,58,120)(49,109,59,119)(50,108,60,118)(61,123,71,133)(62,122,72,132)(63,121,73,131)(64,140,74,130)(65,139,75,129)(66,138,76,128)(67,137,77,127)(68,136,78,126)(69,135,79,125)(70,134,80,124)(81,143,91,153)(82,142,92,152)(83,141,93,151)(84,160,94,150)(85,159,95,149)(86,158,96,148)(87,157,97,147)(88,156,98,146)(89,155,99,145)(90,154,100,144)>;

G:=Group( (1,70,92,55)(2,71,93,56)(3,72,94,57)(4,73,95,58)(5,74,96,59)(6,75,97,60)(7,76,98,41)(8,77,99,42)(9,78,100,43)(10,79,81,44)(11,80,82,45)(12,61,83,46)(13,62,84,47)(14,63,85,48)(15,64,86,49)(16,65,87,50)(17,66,88,51)(18,67,89,52)(19,68,90,53)(20,69,91,54)(21,125,143,114)(22,126,144,115)(23,127,145,116)(24,128,146,117)(25,129,147,118)(26,130,148,119)(27,131,149,120)(28,132,150,101)(29,133,151,102)(30,134,152,103)(31,135,153,104)(32,136,154,105)(33,137,155,106)(34,138,156,107)(35,139,157,108)(36,140,158,109)(37,121,159,110)(38,122,160,111)(39,123,141,112)(40,124,142,113), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,41)(18,42)(19,43)(20,44)(21,104)(22,105)(23,106)(24,107)(25,108)(26,109)(27,110)(28,111)(29,112)(30,113)(31,114)(32,115)(33,116)(34,117)(35,118)(36,119)(37,120)(38,101)(39,102)(40,103)(61,93)(62,94)(63,95)(64,96)(65,97)(66,98)(67,99)(68,100)(69,81)(70,82)(71,83)(72,84)(73,85)(74,86)(75,87)(76,88)(77,89)(78,90)(79,91)(80,92)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,141)(134,142)(135,143)(136,144)(137,145)(138,146)(139,147)(140,148), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,30,11,40)(2,29,12,39)(3,28,13,38)(4,27,14,37)(5,26,15,36)(6,25,16,35)(7,24,17,34)(8,23,18,33)(9,22,19,32)(10,21,20,31)(41,117,51,107)(42,116,52,106)(43,115,53,105)(44,114,54,104)(45,113,55,103)(46,112,56,102)(47,111,57,101)(48,110,58,120)(49,109,59,119)(50,108,60,118)(61,123,71,133)(62,122,72,132)(63,121,73,131)(64,140,74,130)(65,139,75,129)(66,138,76,128)(67,137,77,127)(68,136,78,126)(69,135,79,125)(70,134,80,124)(81,143,91,153)(82,142,92,152)(83,141,93,151)(84,160,94,150)(85,159,95,149)(86,158,96,148)(87,157,97,147)(88,156,98,146)(89,155,99,145)(90,154,100,144) );

G=PermutationGroup([[(1,70,92,55),(2,71,93,56),(3,72,94,57),(4,73,95,58),(5,74,96,59),(6,75,97,60),(7,76,98,41),(8,77,99,42),(9,78,100,43),(10,79,81,44),(11,80,82,45),(12,61,83,46),(13,62,84,47),(14,63,85,48),(15,64,86,49),(16,65,87,50),(17,66,88,51),(18,67,89,52),(19,68,90,53),(20,69,91,54),(21,125,143,114),(22,126,144,115),(23,127,145,116),(24,128,146,117),(25,129,147,118),(26,130,148,119),(27,131,149,120),(28,132,150,101),(29,133,151,102),(30,134,152,103),(31,135,153,104),(32,136,154,105),(33,137,155,106),(34,138,156,107),(35,139,157,108),(36,140,158,109),(37,121,159,110),(38,122,160,111),(39,123,141,112),(40,124,142,113)], [(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,55),(12,56),(13,57),(14,58),(15,59),(16,60),(17,41),(18,42),(19,43),(20,44),(21,104),(22,105),(23,106),(24,107),(25,108),(26,109),(27,110),(28,111),(29,112),(30,113),(31,114),(32,115),(33,116),(34,117),(35,118),(36,119),(37,120),(38,101),(39,102),(40,103),(61,93),(62,94),(63,95),(64,96),(65,97),(66,98),(67,99),(68,100),(69,81),(70,82),(71,83),(72,84),(73,85),(74,86),(75,87),(76,88),(77,89),(78,90),(79,91),(80,92),(121,149),(122,150),(123,151),(124,152),(125,153),(126,154),(127,155),(128,156),(129,157),(130,158),(131,159),(132,160),(133,141),(134,142),(135,143),(136,144),(137,145),(138,146),(139,147),(140,148)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,30,11,40),(2,29,12,39),(3,28,13,38),(4,27,14,37),(5,26,15,36),(6,25,16,35),(7,24,17,34),(8,23,18,33),(9,22,19,32),(10,21,20,31),(41,117,51,107),(42,116,52,106),(43,115,53,105),(44,114,54,104),(45,113,55,103),(46,112,56,102),(47,111,57,101),(48,110,58,120),(49,109,59,119),(50,108,60,118),(61,123,71,133),(62,122,72,132),(63,121,73,131),(64,140,74,130),(65,139,75,129),(66,138,76,128),(67,137,77,127),(68,136,78,126),(69,135,79,125),(70,134,80,124),(81,143,91,153),(82,142,92,152),(83,141,93,151),(84,160,94,150),(85,159,95,149),(86,158,96,148),(87,157,97,147),(88,156,98,146),(89,155,99,145),(90,154,100,144)]])

65 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L···4Q5A5B10A···10F10G···10N20A···20H20I···20X
order12222222444444444444···45510···1010···1020···2020···20
size1111222222224441010101020···20222···24···42···24···4

65 irreducible representations

dim111111111222222222444
type++++++++++-++++++--+-
imageC1C2C2C2C2C2C2C2C2D4Q8D5D10D10D10D10D10Dic102- 1+4D4×D5D4.10D10
kernelD4×Dic10C4×Dic10C202Q8Dic5.14D4C20⋊Q8C20.48D4D4×Dic5D4×C20C22×Dic10Dic10C5×D4C4×D4C42C22⋊C4C4⋊C4C22×C4C2×D4D4C10C4C2
# reps1114222124422424216144

Matrix representation of D4×Dic10 in GL4(𝔽41) generated by

40000
04000
00409
00181
,
1000
0100
00409
0001
,
91100
301400
0010
0001
,
12400
174000
00400
00040
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,40,18,0,0,9,1],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,9,1],[9,30,0,0,11,14,0,0,0,0,1,0,0,0,0,1],[1,17,0,0,24,40,0,0,0,0,40,0,0,0,0,40] >;

D4×Dic10 in GAP, Magma, Sage, TeX

D_4\times {\rm Dic}_{10}
% in TeX

G:=Group("D4xDic10");
// GroupNames label

G:=SmallGroup(320,1209);
// by ID

G=gap.SmallGroup(320,1209);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,387,675,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^20=1,d^2=c^10,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽