extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).(C3×C6) = C3×C32⋊C12 | φ: C3×C6/C3 → C6 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).(C3xC6) | 324,92 |
(C3×C6).2(C3×C6) = C4×C3≀C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C6 | 36 | 3 | (C3xC6).2(C3xC6) | 324,31 |
(C3×C6).3(C3×C6) = C4×He3.C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C6 | 108 | 3 | (C3xC6).3(C3xC6) | 324,32 |
(C3×C6).4(C3×C6) = C4×He3⋊C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C6 | 108 | 3 | (C3xC6).4(C3xC6) | 324,33 |
(C3×C6).5(C3×C6) = C4×C3.He3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C6 | 108 | 3 | (C3xC6).5(C3xC6) | 324,34 |
(C3×C6).6(C3×C6) = C22×C3≀C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C6 | 36 | | (C3xC6).6(C3xC6) | 324,86 |
(C3×C6).7(C3×C6) = C22×He3.C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C6 | 108 | | (C3xC6).7(C3xC6) | 324,87 |
(C3×C6).8(C3×C6) = C22×He3⋊C3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C6 | 108 | | (C3xC6).8(C3xC6) | 324,88 |
(C3×C6).9(C3×C6) = C22×C3.He3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C6 | 108 | | (C3xC6).9(C3xC6) | 324,89 |
(C3×C6).10(C3×C6) = C12×He3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C6 | 108 | | (C3xC6).10(C3xC6) | 324,106 |
(C3×C6).11(C3×C6) = C12×3- 1+2 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C6 | 108 | | (C3xC6).11(C3xC6) | 324,107 |
(C3×C6).12(C3×C6) = C4×C9○He3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C6 | 108 | 3 | (C3xC6).12(C3xC6) | 324,108 |
(C3×C6).13(C3×C6) = C2×C6×3- 1+2 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C6 | 108 | | (C3xC6).13(C3xC6) | 324,153 |
(C3×C6).14(C3×C6) = C22×C9○He3 | φ: C3×C6/C6 → C3 ⊆ Aut C3×C6 | 108 | | (C3xC6).14(C3xC6) | 324,154 |
(C3×C6).15(C3×C6) = Dic3×C3×C9 | φ: C3×C6/C32 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).15(C3xC6) | 324,91 |
(C3×C6).16(C3×C6) = Dic3×He3 | φ: C3×C6/C32 → C2 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).16(C3xC6) | 324,93 |
(C3×C6).17(C3×C6) = Dic3×3- 1+2 | φ: C3×C6/C32 → C2 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).17(C3xC6) | 324,95 |
(C3×C6).18(C3×C6) = S3×C3×C18 | φ: C3×C6/C32 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).18(C3xC6) | 324,137 |
(C3×C6).19(C3×C6) = C2×S3×He3 | φ: C3×C6/C32 → C2 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).19(C3xC6) | 324,139 |
(C3×C6).20(C3×C6) = C2×S3×3- 1+2 | φ: C3×C6/C32 → C2 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).20(C3xC6) | 324,141 |
(C3×C6).21(C3×C6) = Dic3×C33 | φ: C3×C6/C32 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).21(C3xC6) | 324,155 |
(C3×C6).22(C3×C6) = C32×C3⋊Dic3 | φ: C3×C6/C32 → C2 ⊆ Aut C3×C6 | 36 | | (C3xC6).22(C3xC6) | 324,156 |
(C3×C6).23(C3×C6) = C4×C32⋊C9 | central extension (φ=1) | 108 | | (C3xC6).23(C3xC6) | 324,27 |
(C3×C6).24(C3×C6) = C4×C9⋊C9 | central extension (φ=1) | 324 | | (C3xC6).24(C3xC6) | 324,28 |
(C3×C6).25(C3×C6) = C22×C32⋊C9 | central extension (φ=1) | 108 | | (C3xC6).25(C3xC6) | 324,82 |
(C3×C6).26(C3×C6) = C22×C9⋊C9 | central extension (φ=1) | 324 | | (C3xC6).26(C3xC6) | 324,83 |