Extensions 1→N→G→Q→1 with N=C3×C6 and Q=C3×C6

Direct product G=N×Q with N=C3×C6 and Q=C3×C6
dρLabelID
C32×C62324C3^2xC6^2324,176

Semidirect products G=N:Q with N=C3×C6 and Q=C3×C6
extensionφ:Q→Aut NdρLabelID
(C3×C6)⋊(C3×C6) = C6×C32⋊C6φ: C3×C6/C3C6 ⊆ Aut C3×C6366(C3xC6):(C3xC6)324,138
(C3×C6)⋊2(C3×C6) = C2×C6×He3φ: C3×C6/C6C3 ⊆ Aut C3×C6108(C3xC6):2(C3xC6)324,152
(C3×C6)⋊3(C3×C6) = S3×C32×C6φ: C3×C6/C32C2 ⊆ Aut C3×C6108(C3xC6):3(C3xC6)324,172
(C3×C6)⋊4(C3×C6) = C3⋊S3×C3×C6φ: C3×C6/C32C2 ⊆ Aut C3×C636(C3xC6):4(C3xC6)324,173

Non-split extensions G=N.Q with N=C3×C6 and Q=C3×C6
extensionφ:Q→Aut NdρLabelID
(C3×C6).(C3×C6) = C3×C32⋊C12φ: C3×C6/C3C6 ⊆ Aut C3×C6366(C3xC6).(C3xC6)324,92
(C3×C6).2(C3×C6) = C4×C3≀C3φ: C3×C6/C6C3 ⊆ Aut C3×C6363(C3xC6).2(C3xC6)324,31
(C3×C6).3(C3×C6) = C4×He3.C3φ: C3×C6/C6C3 ⊆ Aut C3×C61083(C3xC6).3(C3xC6)324,32
(C3×C6).4(C3×C6) = C4×He3⋊C3φ: C3×C6/C6C3 ⊆ Aut C3×C61083(C3xC6).4(C3xC6)324,33
(C3×C6).5(C3×C6) = C4×C3.He3φ: C3×C6/C6C3 ⊆ Aut C3×C61083(C3xC6).5(C3xC6)324,34
(C3×C6).6(C3×C6) = C22×C3≀C3φ: C3×C6/C6C3 ⊆ Aut C3×C636(C3xC6).6(C3xC6)324,86
(C3×C6).7(C3×C6) = C22×He3.C3φ: C3×C6/C6C3 ⊆ Aut C3×C6108(C3xC6).7(C3xC6)324,87
(C3×C6).8(C3×C6) = C22×He3⋊C3φ: C3×C6/C6C3 ⊆ Aut C3×C6108(C3xC6).8(C3xC6)324,88
(C3×C6).9(C3×C6) = C22×C3.He3φ: C3×C6/C6C3 ⊆ Aut C3×C6108(C3xC6).9(C3xC6)324,89
(C3×C6).10(C3×C6) = C12×He3φ: C3×C6/C6C3 ⊆ Aut C3×C6108(C3xC6).10(C3xC6)324,106
(C3×C6).11(C3×C6) = C12×3- 1+2φ: C3×C6/C6C3 ⊆ Aut C3×C6108(C3xC6).11(C3xC6)324,107
(C3×C6).12(C3×C6) = C4×C9○He3φ: C3×C6/C6C3 ⊆ Aut C3×C61083(C3xC6).12(C3xC6)324,108
(C3×C6).13(C3×C6) = C2×C6×3- 1+2φ: C3×C6/C6C3 ⊆ Aut C3×C6108(C3xC6).13(C3xC6)324,153
(C3×C6).14(C3×C6) = C22×C9○He3φ: C3×C6/C6C3 ⊆ Aut C3×C6108(C3xC6).14(C3xC6)324,154
(C3×C6).15(C3×C6) = Dic3×C3×C9φ: C3×C6/C32C2 ⊆ Aut C3×C6108(C3xC6).15(C3xC6)324,91
(C3×C6).16(C3×C6) = Dic3×He3φ: C3×C6/C32C2 ⊆ Aut C3×C6366(C3xC6).16(C3xC6)324,93
(C3×C6).17(C3×C6) = Dic3×3- 1+2φ: C3×C6/C32C2 ⊆ Aut C3×C6366(C3xC6).17(C3xC6)324,95
(C3×C6).18(C3×C6) = S3×C3×C18φ: C3×C6/C32C2 ⊆ Aut C3×C6108(C3xC6).18(C3xC6)324,137
(C3×C6).19(C3×C6) = C2×S3×He3φ: C3×C6/C32C2 ⊆ Aut C3×C6366(C3xC6).19(C3xC6)324,139
(C3×C6).20(C3×C6) = C2×S3×3- 1+2φ: C3×C6/C32C2 ⊆ Aut C3×C6366(C3xC6).20(C3xC6)324,141
(C3×C6).21(C3×C6) = Dic3×C33φ: C3×C6/C32C2 ⊆ Aut C3×C6108(C3xC6).21(C3xC6)324,155
(C3×C6).22(C3×C6) = C32×C3⋊Dic3φ: C3×C6/C32C2 ⊆ Aut C3×C636(C3xC6).22(C3xC6)324,156
(C3×C6).23(C3×C6) = C4×C32⋊C9central extension (φ=1)108(C3xC6).23(C3xC6)324,27
(C3×C6).24(C3×C6) = C4×C9⋊C9central extension (φ=1)324(C3xC6).24(C3xC6)324,28
(C3×C6).25(C3×C6) = C22×C32⋊C9central extension (φ=1)108(C3xC6).25(C3xC6)324,82
(C3×C6).26(C3×C6) = C22×C9⋊C9central extension (φ=1)324(C3xC6).26(C3xC6)324,83

׿
×
𝔽