direct product, non-abelian, soluble, monomial, A-group
Aliases: C2×AΓL1(𝔽8), F8⋊C6, (C2×F8)⋊C3, C24⋊(C7⋊C3), C23⋊(C2×C7⋊C3), SmallGroup(336,210)
Series: Derived ►Chief ►Lower central ►Upper central
F8 — C2×AΓL1(𝔽8) |
Generators and relations for C2×AΓL1(𝔽8)
G = < a,b,c,d,e,f | a2=b2=c2=d2=e7=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf-1=bd=db, ebe-1=dc=cd, ece-1=fcf-1=b, ede-1=c, fdf-1=bcd, fef-1=e4 >
Character table of C2×AΓL1(𝔽8)
class | 1 | 2A | 2B | 2C | 3A | 3B | 6A | 6B | 6C | 6D | 6E | 6F | 7A | 7B | 14A | 14B | |
size | 1 | 1 | 7 | 7 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 24 | 24 | 24 | 24 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ5 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ6 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | 1 | 1 | -1 | -1 | linear of order 6 |
ρ6 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ65 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | 1 | 1 | -1 | -1 | linear of order 6 |
ρ7 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ8 | 3 | -3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | 1+√-7/2 | 1-√-7/2 | complex lifted from C2×C7⋊C3 |
ρ9 | 3 | -3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | 1-√-7/2 | 1+√-7/2 | complex lifted from C2×C7⋊C3 |
ρ10 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ11 | 7 | 7 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from AΓL1(𝔽8) |
ρ12 | 7 | -7 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ13 | 7 | 7 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ6 | ζ3 | ζ65 | ζ32 | 0 | 0 | 0 | 0 | complex lifted from AΓL1(𝔽8) |
ρ14 | 7 | -7 | 1 | -1 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | ζ6 | ζ32 | ζ65 | 0 | 0 | 0 | 0 | complex faithful |
ρ15 | 7 | -7 | 1 | -1 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | ζ65 | ζ3 | ζ6 | 0 | 0 | 0 | 0 | complex faithful |
ρ16 | 7 | 7 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ65 | ζ32 | ζ6 | ζ3 | 0 | 0 | 0 | 0 | complex lifted from AΓL1(𝔽8) |
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 8)
(1 9)(2 10)(5 13)(7 8)
(1 9)(2 10)(3 11)(6 14)
(2 10)(3 11)(4 12)(7 8)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)
(2 3 5)(4 7 6)(8 14 12)(10 11 13)
G:=sub<Sym(14)| (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,8), (1,9)(2,10)(5,13)(7,8), (1,9)(2,10)(3,11)(6,14), (2,10)(3,11)(4,12)(7,8), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (2,3,5)(4,7,6)(8,14,12)(10,11,13)>;
G:=Group( (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,8), (1,9)(2,10)(5,13)(7,8), (1,9)(2,10)(3,11)(6,14), (2,10)(3,11)(4,12)(7,8), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (2,3,5)(4,7,6)(8,14,12)(10,11,13) );
G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,8)], [(1,9),(2,10),(5,13),(7,8)], [(1,9),(2,10),(3,11),(6,14)], [(2,10),(3,11),(4,12),(7,8)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14)], [(2,3,5),(4,7,6),(8,14,12),(10,11,13)]])
G:=TransitiveGroup(14,18);
(1 2)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(9 16)
(1 3)(2 10)(4 8)(5 6)(7 9)(11 15)(12 13)(14 16)
(1 4)(2 11)(3 8)(5 9)(6 7)(10 15)(12 16)(13 14)
(1 5)(2 12)(3 6)(4 9)(7 8)(10 13)(11 16)(14 15)
(3 4 5 6 7 8 9)(10 11 12 13 14 15 16)
(3 4 6)(5 8 7)(10 11 13)(12 15 14)
G:=sub<Sym(16)| (1,2)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(9,16), (1,3)(2,10)(4,8)(5,6)(7,9)(11,15)(12,13)(14,16), (1,4)(2,11)(3,8)(5,9)(6,7)(10,15)(12,16)(13,14), (1,5)(2,12)(3,6)(4,9)(7,8)(10,13)(11,16)(14,15), (3,4,5,6,7,8,9)(10,11,12,13,14,15,16), (3,4,6)(5,8,7)(10,11,13)(12,15,14)>;
G:=Group( (1,2)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(9,16), (1,3)(2,10)(4,8)(5,6)(7,9)(11,15)(12,13)(14,16), (1,4)(2,11)(3,8)(5,9)(6,7)(10,15)(12,16)(13,14), (1,5)(2,12)(3,6)(4,9)(7,8)(10,13)(11,16)(14,15), (3,4,5,6,7,8,9)(10,11,12,13,14,15,16), (3,4,6)(5,8,7)(10,11,13)(12,15,14) );
G=PermutationGroup([[(1,2),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(9,16)], [(1,3),(2,10),(4,8),(5,6),(7,9),(11,15),(12,13),(14,16)], [(1,4),(2,11),(3,8),(5,9),(6,7),(10,15),(12,16),(13,14)], [(1,5),(2,12),(3,6),(4,9),(7,8),(10,13),(11,16),(14,15)], [(3,4,5,6,7,8,9),(10,11,12,13,14,15,16)], [(3,4,6),(5,8,7),(10,11,13),(12,15,14)]])
G:=TransitiveGroup(16,712);
(1 27)(2 28)(3 22)(4 23)(5 24)(6 25)(7 26)(8 19)(9 20)(10 21)(11 15)(12 16)(13 17)(14 18)
(1 18)(2 19)(5 15)(7 17)(8 28)(11 24)(13 26)(14 27)
(1 18)(2 19)(3 20)(6 16)(8 28)(9 22)(12 25)(14 27)
(2 19)(3 20)(4 21)(7 17)(8 28)(9 22)(10 23)(13 26)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(2 3 5)(4 7 6)(8 9 11)(10 13 12)(15 19 20)(16 21 17)(22 24 28)(23 26 25)
G:=sub<Sym(28)| (1,27)(2,28)(3,22)(4,23)(5,24)(6,25)(7,26)(8,19)(9,20)(10,21)(11,15)(12,16)(13,17)(14,18), (1,18)(2,19)(5,15)(7,17)(8,28)(11,24)(13,26)(14,27), (1,18)(2,19)(3,20)(6,16)(8,28)(9,22)(12,25)(14,27), (2,19)(3,20)(4,21)(7,17)(8,28)(9,22)(10,23)(13,26), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (2,3,5)(4,7,6)(8,9,11)(10,13,12)(15,19,20)(16,21,17)(22,24,28)(23,26,25)>;
G:=Group( (1,27)(2,28)(3,22)(4,23)(5,24)(6,25)(7,26)(8,19)(9,20)(10,21)(11,15)(12,16)(13,17)(14,18), (1,18)(2,19)(5,15)(7,17)(8,28)(11,24)(13,26)(14,27), (1,18)(2,19)(3,20)(6,16)(8,28)(9,22)(12,25)(14,27), (2,19)(3,20)(4,21)(7,17)(8,28)(9,22)(10,23)(13,26), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (2,3,5)(4,7,6)(8,9,11)(10,13,12)(15,19,20)(16,21,17)(22,24,28)(23,26,25) );
G=PermutationGroup([[(1,27),(2,28),(3,22),(4,23),(5,24),(6,25),(7,26),(8,19),(9,20),(10,21),(11,15),(12,16),(13,17),(14,18)], [(1,18),(2,19),(5,15),(7,17),(8,28),(11,24),(13,26),(14,27)], [(1,18),(2,19),(3,20),(6,16),(8,28),(9,22),(12,25),(14,27)], [(2,19),(3,20),(4,21),(7,17),(8,28),(9,22),(10,23),(13,26)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(2,3,5),(4,7,6),(8,9,11),(10,13,12),(15,19,20),(16,21,17),(22,24,28),(23,26,25)]])
G:=TransitiveGroup(28,44);
Polynomial with Galois group C2×AΓL1(𝔽8) over ℚ
action | f(x) | Disc(f) |
---|---|---|
14T18 | x14+5x12-11x10-25x8+27x6+23x4-17x2+1 | -238·7312 |
Matrix representation of C2×AΓL1(𝔽8) ►in GL7(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | -1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(7,Integers())| [-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1],[0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0] >;
C2×AΓL1(𝔽8) in GAP, Magma, Sage, TeX
C_2\times {\rm AGammaL}_1({\mathbb F}_8)
% in TeX
G:=Group("C2xAGammaL(1,8)");
// GroupNames label
G:=SmallGroup(336,210);
// by ID
G=gap.SmallGroup(336,210);
# by ID
G:=PCGroup([6,-2,-3,-7,-2,2,2,116,2529,351,1900,856,767,1277]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^7=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f^-1=b*d=d*b,e*b*e^-1=d*c=c*d,e*c*e^-1=f*c*f^-1=b,e*d*e^-1=c,f*d*f^-1=b*c*d,f*e*f^-1=e^4>;
// generators/relations
Export
Subgroup lattice of C2×AΓL1(𝔽8) in TeX
Character table of C2×AΓL1(𝔽8) in TeX