direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×C41⋊C4, C82⋊C4, D41⋊C4, D82.C2, D41.C22, C41⋊(C2×C4), SmallGroup(328,13)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C41 — D41 — C41⋊C4 — C2×C41⋊C4 |
C41 — C2×C41⋊C4 |
Generators and relations for C2×C41⋊C4
G = < a,b,c | a2=b41=c4=1, ab=ba, ac=ca, cbc-1=b9 >
Character table of C2×C41⋊C4
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 41A | 41B | 41C | 41D | 41E | 41F | 41G | 41H | 41I | 41J | 82A | 82B | 82C | 82D | 82E | 82F | 82G | 82H | 82I | 82J | |
size | 1 | 1 | 41 | 41 | 41 | 41 | 41 | 41 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | i | -i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | i | i | -i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | -i | -i | i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | -i | i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4137+ζ4136+ζ415+ζ414 | ζ4140+ζ4132+ζ419+ζ41 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4140+ζ4132+ζ419+ζ41 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4137+ζ4136+ζ415+ζ414 | orthogonal lifted from C41⋊C4 |
ρ10 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4140+ζ4132+ζ419+ζ41 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4137+ζ4136+ζ415+ζ414 | ζ4135+ζ4128+ζ4113+ζ416 | -ζ4137-ζ4136-ζ415-ζ414 | -ζ4135-ζ4128-ζ4113-ζ416 | -ζ4139-ζ4123-ζ4118-ζ412 | -ζ4140-ζ4132-ζ419-ζ41 | -ζ4129-ζ4126-ζ4115-ζ4112 | -ζ4130-ζ4124-ζ4117-ζ4111 | -ζ4134-ζ4122-ζ4119-ζ417 | -ζ4133-ζ4131-ζ4110-ζ418 | -ζ4138-ζ4127-ζ4114-ζ413 | -ζ4125-ζ4121-ζ4120-ζ4116 | orthogonal faithful |
ρ11 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4140+ζ4132+ζ419+ζ41 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4137+ζ4136+ζ415+ζ414 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4140+ζ4132+ζ419+ζ41 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4137+ζ4136+ζ415+ζ414 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4129+ζ4126+ζ4115+ζ4112 | orthogonal lifted from C41⋊C4 |
ρ12 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4140+ζ4132+ζ419+ζ41 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4137+ζ4136+ζ415+ζ414 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4125+ζ4121+ζ4120+ζ4116 | -ζ4138-ζ4127-ζ4114-ζ413 | -ζ4125-ζ4121-ζ4120-ζ4116 | -ζ4134-ζ4122-ζ4119-ζ417 | -ζ4130-ζ4124-ζ4117-ζ4111 | -ζ4140-ζ4132-ζ419-ζ41 | -ζ4139-ζ4123-ζ4118-ζ412 | -ζ4137-ζ4136-ζ415-ζ414 | -ζ4135-ζ4128-ζ4113-ζ416 | -ζ4133-ζ4131-ζ4110-ζ418 | -ζ4129-ζ4126-ζ4115-ζ4112 | orthogonal faithful |
ρ13 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4140+ζ4132+ζ419+ζ41 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4137+ζ4136+ζ415+ζ414 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4138+ζ4127+ζ4114+ζ413 | -ζ4139-ζ4123-ζ4118-ζ412 | -ζ4138-ζ4127-ζ4114-ζ413 | -ζ4140-ζ4132-ζ419-ζ41 | -ζ4125-ζ4121-ζ4120-ζ4116 | -ζ4135-ζ4128-ζ4113-ζ416 | -ζ4129-ζ4126-ζ4115-ζ4112 | -ζ4130-ζ4124-ζ4117-ζ4111 | -ζ4137-ζ4136-ζ415-ζ414 | -ζ4134-ζ4122-ζ4119-ζ417 | -ζ4133-ζ4131-ζ4110-ζ418 | orthogonal faithful |
ρ14 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4137+ζ4136+ζ415+ζ414 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4140+ζ4132+ζ419+ζ41 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4139+ζ4123+ζ4118+ζ412 | -ζ4129-ζ4126-ζ4115-ζ4112 | -ζ4139-ζ4123-ζ4118-ζ412 | -ζ4135-ζ4128-ζ4113-ζ416 | -ζ4138-ζ4127-ζ4114-ζ413 | -ζ4137-ζ4136-ζ415-ζ414 | -ζ4133-ζ4131-ζ4110-ζ418 | -ζ4125-ζ4121-ζ4120-ζ4116 | -ζ4130-ζ4124-ζ4117-ζ4111 | -ζ4140-ζ4132-ζ419-ζ41 | -ζ4134-ζ4122-ζ4119-ζ417 | orthogonal faithful |
ρ15 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4140+ζ4132+ζ419+ζ41 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4137+ζ4136+ζ415+ζ414 | -ζ4130-ζ4124-ζ4117-ζ4111 | -ζ4137-ζ4136-ζ415-ζ414 | -ζ4129-ζ4126-ζ4115-ζ4112 | -ζ4135-ζ4128-ζ4113-ζ416 | -ζ4133-ζ4131-ζ4110-ζ418 | -ζ4125-ζ4121-ζ4120-ζ4116 | -ζ4140-ζ4132-ζ419-ζ41 | -ζ4134-ζ4122-ζ4119-ζ417 | -ζ4139-ζ4123-ζ4118-ζ412 | -ζ4138-ζ4127-ζ4114-ζ413 | orthogonal faithful |
ρ16 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4140+ζ4132+ζ419+ζ41 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4137+ζ4136+ζ415+ζ414 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4133+ζ4131+ζ4110+ζ418 | -ζ4134-ζ4122-ζ4119-ζ417 | -ζ4133-ζ4131-ζ4110-ζ418 | -ζ4130-ζ4124-ζ4117-ζ4111 | -ζ4129-ζ4126-ζ4115-ζ4112 | -ζ4125-ζ4121-ζ4120-ζ4116 | -ζ4140-ζ4132-ζ419-ζ41 | -ζ4139-ζ4123-ζ4118-ζ412 | -ζ4138-ζ4127-ζ4114-ζ413 | -ζ4137-ζ4136-ζ415-ζ414 | -ζ4135-ζ4128-ζ4113-ζ416 | orthogonal faithful |
ρ17 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4140+ζ4132+ζ419+ζ41 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4137+ζ4136+ζ415+ζ414 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4140+ζ4132+ζ419+ζ41 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4137+ζ4136+ζ415+ζ414 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4133+ζ4131+ζ4110+ζ418 | orthogonal lifted from C41⋊C4 |
ρ18 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4137+ζ4136+ζ415+ζ414 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4140+ζ4132+ζ419+ζ41 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4129+ζ4126+ζ4115+ζ4112 | -ζ4133-ζ4131-ζ4110-ζ418 | -ζ4129-ζ4126-ζ4115-ζ4112 | -ζ4137-ζ4136-ζ415-ζ414 | -ζ4139-ζ4123-ζ4118-ζ412 | -ζ4130-ζ4124-ζ4117-ζ4111 | -ζ4134-ζ4122-ζ4119-ζ417 | -ζ4138-ζ4127-ζ4114-ζ413 | -ζ4125-ζ4121-ζ4120-ζ4116 | -ζ4135-ζ4128-ζ4113-ζ416 | -ζ4140-ζ4132-ζ419-ζ41 | orthogonal faithful |
ρ19 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4137+ζ4136+ζ415+ζ414 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4140+ζ4132+ζ419+ζ41 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4137+ζ4136+ζ415+ζ414 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4140+ζ4132+ζ419+ζ41 | ζ4134+ζ4122+ζ4119+ζ417 | orthogonal lifted from C41⋊C4 |
ρ20 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4140+ζ4132+ζ419+ζ41 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4137+ζ4136+ζ415+ζ414 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4137+ζ4136+ζ415+ζ414 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4140+ζ4132+ζ419+ζ41 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4125+ζ4121+ζ4120+ζ4116 | orthogonal lifted from C41⋊C4 |
ρ21 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4137+ζ4136+ζ415+ζ414 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4140+ζ4132+ζ419+ζ41 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4140+ζ4132+ζ419+ζ41 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4137+ζ4136+ζ415+ζ414 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4130+ζ4124+ζ4117+ζ4111 | orthogonal lifted from C41⋊C4 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4137+ζ4136+ζ415+ζ414 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4140+ζ4132+ζ419+ζ41 | -ζ4135-ζ4128-ζ4113-ζ416 | -ζ4140-ζ4132-ζ419-ζ41 | -ζ4138-ζ4127-ζ4114-ζ413 | -ζ4134-ζ4122-ζ4119-ζ417 | -ζ4139-ζ4123-ζ4118-ζ412 | -ζ4137-ζ4136-ζ415-ζ414 | -ζ4133-ζ4131-ζ4110-ζ418 | -ζ4129-ζ4126-ζ4115-ζ4112 | -ζ4125-ζ4121-ζ4120-ζ4116 | -ζ4130-ζ4124-ζ4117-ζ4111 | orthogonal faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4137+ζ4136+ζ415+ζ414 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4140+ζ4132+ζ419+ζ41 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4130+ζ4124+ζ4117+ζ4111 | -ζ4125-ζ4121-ζ4120-ζ4116 | -ζ4130-ζ4124-ζ4117-ζ4111 | -ζ4133-ζ4131-ζ4110-ζ418 | -ζ4137-ζ4136-ζ415-ζ414 | -ζ4134-ζ4122-ζ4119-ζ417 | -ζ4138-ζ4127-ζ4114-ζ413 | -ζ4135-ζ4128-ζ4113-ζ416 | -ζ4140-ζ4132-ζ419-ζ41 | -ζ4129-ζ4126-ζ4115-ζ4112 | -ζ4139-ζ4123-ζ4118-ζ412 | orthogonal faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4137+ζ4136+ζ415+ζ414 | ζ4140+ζ4132+ζ419+ζ41 | ζ4134+ζ4122+ζ4119+ζ417 | -ζ4140-ζ4132-ζ419-ζ41 | -ζ4134-ζ4122-ζ4119-ζ417 | -ζ4125-ζ4121-ζ4120-ζ4116 | -ζ4133-ζ4131-ζ4110-ζ418 | -ζ4138-ζ4127-ζ4114-ζ413 | -ζ4135-ζ4128-ζ4113-ζ416 | -ζ4129-ζ4126-ζ4115-ζ4112 | -ζ4139-ζ4123-ζ4118-ζ412 | -ζ4130-ζ4124-ζ4117-ζ4111 | -ζ4137-ζ4136-ζ415-ζ414 | orthogonal faithful |
ρ25 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4137+ζ4136+ζ415+ζ414 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4140+ζ4132+ζ419+ζ41 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4137+ζ4136+ζ415+ζ414 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4140+ζ4132+ζ419+ζ41 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4139+ζ4123+ζ4118+ζ412 | orthogonal lifted from C41⋊C4 |
ρ26 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4137+ζ4136+ζ415+ζ414 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4140+ζ4132+ζ419+ζ41 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4137+ζ4136+ζ415+ζ414 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4140+ζ4132+ζ419+ζ41 | orthogonal lifted from C41⋊C4 |
ρ27 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4140+ζ4132+ζ419+ζ41 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4137+ζ4136+ζ415+ζ414 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4140+ζ4132+ζ419+ζ41 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4137+ζ4136+ζ415+ζ414 | ζ4135+ζ4128+ζ4113+ζ416 | orthogonal lifted from C41⋊C4 |
ρ28 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4140+ζ4132+ζ419+ζ41 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4138+ζ4127+ζ4114+ζ413 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4137+ζ4136+ζ415+ζ414 | ζ4130+ζ4124+ζ4117+ζ4111 | ζ4137+ζ4136+ζ415+ζ414 | ζ4129+ζ4126+ζ4115+ζ4112 | ζ4135+ζ4128+ζ4113+ζ416 | ζ4133+ζ4131+ζ4110+ζ418 | ζ4125+ζ4121+ζ4120+ζ4116 | ζ4140+ζ4132+ζ419+ζ41 | ζ4134+ζ4122+ζ4119+ζ417 | ζ4139+ζ4123+ζ4118+ζ412 | ζ4138+ζ4127+ζ4114+ζ413 | orthogonal lifted from C41⋊C4 |
(1 42)(2 43)(3 44)(4 45)(5 46)(6 47)(7 48)(8 49)(9 50)(10 51)(11 52)(12 53)(13 54)(14 55)(15 56)(16 57)(17 58)(18 59)(19 60)(20 61)(21 62)(22 63)(23 64)(24 65)(25 66)(26 67)(27 68)(28 69)(29 70)(30 71)(31 72)(32 73)(33 74)(34 75)(35 76)(36 77)(37 78)(38 79)(39 80)(40 81)(41 82)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41)(42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82)
(2 33 41 10)(3 24 40 19)(4 15 39 28)(5 6 38 37)(7 29 36 14)(8 20 35 23)(9 11 34 32)(12 25 31 18)(13 16 30 27)(17 21 26 22)(43 74 82 51)(44 65 81 60)(45 56 80 69)(46 47 79 78)(48 70 77 55)(49 61 76 64)(50 52 75 73)(53 66 72 59)(54 57 71 68)(58 62 67 63)
G:=sub<Sym(82)| (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,57)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,65)(25,66)(26,67)(27,68)(28,69)(29,70)(30,71)(31,72)(32,73)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,81)(41,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82), (2,33,41,10)(3,24,40,19)(4,15,39,28)(5,6,38,37)(7,29,36,14)(8,20,35,23)(9,11,34,32)(12,25,31,18)(13,16,30,27)(17,21,26,22)(43,74,82,51)(44,65,81,60)(45,56,80,69)(46,47,79,78)(48,70,77,55)(49,61,76,64)(50,52,75,73)(53,66,72,59)(54,57,71,68)(58,62,67,63)>;
G:=Group( (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,57)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,65)(25,66)(26,67)(27,68)(28,69)(29,70)(30,71)(31,72)(32,73)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,81)(41,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82), (2,33,41,10)(3,24,40,19)(4,15,39,28)(5,6,38,37)(7,29,36,14)(8,20,35,23)(9,11,34,32)(12,25,31,18)(13,16,30,27)(17,21,26,22)(43,74,82,51)(44,65,81,60)(45,56,80,69)(46,47,79,78)(48,70,77,55)(49,61,76,64)(50,52,75,73)(53,66,72,59)(54,57,71,68)(58,62,67,63) );
G=PermutationGroup([[(1,42),(2,43),(3,44),(4,45),(5,46),(6,47),(7,48),(8,49),(9,50),(10,51),(11,52),(12,53),(13,54),(14,55),(15,56),(16,57),(17,58),(18,59),(19,60),(20,61),(21,62),(22,63),(23,64),(24,65),(25,66),(26,67),(27,68),(28,69),(29,70),(30,71),(31,72),(32,73),(33,74),(34,75),(35,76),(36,77),(37,78),(38,79),(39,80),(40,81),(41,82)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41),(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82)], [(2,33,41,10),(3,24,40,19),(4,15,39,28),(5,6,38,37),(7,29,36,14),(8,20,35,23),(9,11,34,32),(12,25,31,18),(13,16,30,27),(17,21,26,22),(43,74,82,51),(44,65,81,60),(45,56,80,69),(46,47,79,78),(48,70,77,55),(49,61,76,64),(50,52,75,73),(53,66,72,59),(54,57,71,68),(58,62,67,63)]])
Matrix representation of C2×C41⋊C4 ►in GL5(𝔽821)
820 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 206 | 609 | 80 | 820 |
0 | 466 | 741 | 340 | 201 |
0 | 506 | 373 | 61 | 420 |
0 | 340 | 224 | 691 | 94 |
295 | 0 | 0 | 0 | 0 |
0 | 725 | 146 | 284 | 161 |
0 | 685 | 489 | 288 | 706 |
0 | 735 | 35 | 225 | 599 |
0 | 320 | 772 | 668 | 203 |
G:=sub<GL(5,GF(821))| [820,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,206,466,506,340,0,609,741,373,224,0,80,340,61,691,0,820,201,420,94],[295,0,0,0,0,0,725,685,735,320,0,146,489,35,772,0,284,288,225,668,0,161,706,599,203] >;
C2×C41⋊C4 in GAP, Magma, Sage, TeX
C_2\times C_{41}\rtimes C_4
% in TeX
G:=Group("C2xC41:C4");
// GroupNames label
G:=SmallGroup(328,13);
// by ID
G=gap.SmallGroup(328,13);
# by ID
G:=PCGroup([4,-2,-2,-2,-41,16,4099,1291]);
// Polycyclic
G:=Group<a,b,c|a^2=b^41=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^9>;
// generators/relations
Export
Subgroup lattice of C2×C41⋊C4 in TeX
Character table of C2×C41⋊C4 in TeX