extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1(C3×S3) = He3⋊C12 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C6 | 36 | 3 | (C3xC6).1(C3xS3) | 324,13 |
(C3×C6).2(C3×S3) = He3.C12 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C6 | 108 | 3 | (C3xC6).2(C3xS3) | 324,15 |
(C3×C6).3(C3×S3) = He3.2C12 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C6 | 108 | 3 | (C3xC6).3(C3xS3) | 324,17 |
(C3×C6).4(C3×S3) = C2×C3≀S3 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C6 | 18 | 3 | (C3xC6).4(C3xS3) | 324,68 |
(C3×C6).5(C3×S3) = C2×He3.C6 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C6 | 54 | 3 | (C3xC6).5(C3xS3) | 324,70 |
(C3×C6).6(C3×S3) = C2×He3.2C6 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C6 | 54 | 3 | (C3xC6).6(C3xS3) | 324,72 |
(C3×C6).7(C3×S3) = C3×C32⋊C12 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).7(C3xS3) | 324,92 |
(C3×C6).8(C3×S3) = C3×C9⋊C12 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).8(C3xS3) | 324,94 |
(C3×C6).9(C3×S3) = C3×He3⋊3C4 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C6 | 108 | | (C3xC6).9(C3xS3) | 324,99 |
(C3×C6).10(C3×S3) = He3.5C12 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C6 | 108 | 3 | (C3xC6).10(C3xS3) | 324,102 |
(C3×C6).11(C3×S3) = C6×C9⋊C6 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).11(C3xS3) | 324,140 |
(C3×C6).12(C3×S3) = C2×He3.4C6 | φ: C3×S3/C3 → S3 ⊆ Aut C3×C6 | 54 | 3 | (C3xC6).12(C3xS3) | 324,148 |
(C3×C6).13(C3×S3) = C33⋊C12 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C6 | 36 | 6- | (C3xC6).13(C3xS3) | 324,14 |
(C3×C6).14(C3×S3) = He3.Dic3 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C6 | 108 | 6- | (C3xC6).14(C3xS3) | 324,16 |
(C3×C6).15(C3×S3) = He3.2Dic3 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C6 | 108 | 6- | (C3xC6).15(C3xS3) | 324,18 |
(C3×C6).16(C3×S3) = C2×C33⋊C6 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C6 | 18 | 6+ | (C3xC6).16(C3xS3) | 324,69 |
(C3×C6).17(C3×S3) = C2×He3.S3 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C6 | 54 | 6+ | (C3xC6).17(C3xS3) | 324,71 |
(C3×C6).18(C3×S3) = C2×He3.2S3 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C6 | 54 | 6+ | (C3xC6).18(C3xS3) | 324,73 |
(C3×C6).19(C3×S3) = C33⋊4C12 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C6 | 108 | | (C3xC6).19(C3xS3) | 324,98 |
(C3×C6).20(C3×S3) = He3.4Dic3 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C6 | 108 | 6- | (C3xC6).20(C3xS3) | 324,101 |
(C3×C6).21(C3×S3) = C2×He3.4S3 | φ: C3×S3/C3 → C6 ⊆ Aut C3×C6 | 54 | 6+ | (C3xC6).21(C3xS3) | 324,147 |
(C3×C6).22(C3×S3) = Dic3×He3 | φ: C3×S3/S3 → C3 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).22(C3xS3) | 324,93 |
(C3×C6).23(C3×S3) = Dic3×3- 1+2 | φ: C3×S3/S3 → C3 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).23(C3xS3) | 324,95 |
(C3×C6).24(C3×S3) = C2×S3×3- 1+2 | φ: C3×S3/S3 → C3 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).24(C3xS3) | 324,141 |
(C3×C6).25(C3×S3) = C9×Dic9 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 36 | 2 | (C3xC6).25(C3xS3) | 324,6 |
(C3×C6).26(C3×S3) = C32⋊C36 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).26(C3xS3) | 324,7 |
(C3×C6).27(C3×S3) = C32⋊Dic9 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).27(C3xS3) | 324,8 |
(C3×C6).28(C3×S3) = C9⋊C36 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).28(C3xS3) | 324,9 |
(C3×C6).29(C3×S3) = D9×C18 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 36 | 2 | (C3xC6).29(C3xS3) | 324,61 |
(C3×C6).30(C3×S3) = C2×C32⋊C18 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).30(C3xS3) | 324,62 |
(C3×C6).31(C3×S3) = C2×C32⋊D9 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 54 | | (C3xC6).31(C3xS3) | 324,63 |
(C3×C6).32(C3×S3) = C2×C9⋊C18 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).32(C3xS3) | 324,64 |
(C3×C6).33(C3×S3) = C32×Dic9 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).33(C3xS3) | 324,90 |
(C3×C6).34(C3×S3) = C3×C9⋊Dic3 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).34(C3xS3) | 324,96 |
(C3×C6).35(C3×S3) = C9×C3⋊Dic3 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).35(C3xS3) | 324,97 |
(C3×C6).36(C3×S3) = C33.Dic3 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).36(C3xS3) | 324,100 |
(C3×C6).37(C3×S3) = D9×C3×C6 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).37(C3xS3) | 324,136 |
(C3×C6).38(C3×S3) = C6×C9⋊S3 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).38(C3xS3) | 324,142 |
(C3×C6).39(C3×S3) = C18×C3⋊S3 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).39(C3xS3) | 324,143 |
(C3×C6).40(C3×S3) = C2×C33.S3 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 54 | | (C3xC6).40(C3xS3) | 324,146 |
(C3×C6).41(C3×S3) = C32×C3⋊Dic3 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 36 | | (C3xC6).41(C3xS3) | 324,156 |
(C3×C6).42(C3×S3) = C3×C33⋊5C4 | φ: C3×S3/C32 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).42(C3xS3) | 324,157 |
(C3×C6).43(C3×S3) = Dic3×C3×C9 | central extension (φ=1) | 108 | | (C3xC6).43(C3xS3) | 324,91 |
(C3×C6).44(C3×S3) = S3×C3×C18 | central extension (φ=1) | 108 | | (C3xC6).44(C3xS3) | 324,137 |
(C3×C6).45(C3×S3) = Dic3×C33 | central extension (φ=1) | 108 | | (C3xC6).45(C3xS3) | 324,155 |